The Portfolio Balance Channel of Quantitative Easing in a DSGE Model with Financial Frictions*

Genevieve Nelson[†] Danmarks Nationalbank

September 14, 2023
Please click here for latest version

Abstract

This paper models an expanded Portfolio Balance Channel of Quantitative Easing (QE): Investors who arbitrage between long term government debt and corporate debt drive the cost of corporate borrowing down following Federal Reserve purchases of long term government bonds. I find that overall the Federal Reserve's second round of QE (LSAPII) boosts output between 0.5% - 1.7%, the equivalent of a 83 - 279 basis point cut in the Federal Funds rate. The long term maturity preference of investors is an important amplifier of the macroeconomic effect of QE. QE reduces corporate bond yields and boosts equity prices.

Keywords: Quantitative Easing, Financial Frictions

JEL Codes: E13, E52.

^{*}This paper is a revised version of Chapter 1 of my PhD dissertation at the University of Oxford. I am very grateful to my advisor Andrea Ferrero. For insightful comments I thank: Matteo Iacoviello, Francesco Zanetti, Michael McMahon, Philipp Lieberknecht, Romanos Priftis, and seminar participants at Danmarks Nationalbank and the Bank of Canada.

[†]Research Economist, Research Unit, Danmarks Nationalbank, Langelinie Allé 47, 2100 Copenhagen, Denmark; Email: gne@nationalbanken.dk; Web: https://www.genevievenelson.com. This paper represents solely the view of the author and does not in any way reflect the opinions of Danmarks Nationalbank or the Bank of Canada.

1 Introduction

Following the Global Financial Crisis the Federal Reserve purchased \$1,690 billion in longer term US Treasuries over three rounds of large scale asset purchases (i.e. quantitative easing, QE)¹. The empirical literature on QE suggests not only that the Large Scale Asset Purchases (LSAPs) had a downward effect on US term premiums, but also a wider financial market effect: increasing equity prices and lowering corporate bond yields. In a narrow sense the Portfolio Balance Channel of QE captures the idea that purchases of longer maturity US Treasuries compress the term premium on longer term government bonds. In this paper I explore, using a macroeconomic model, how the portfolio rebalancing of investors in response to LSAPs adds an additional transmission channel of QE: the "expanded portfolio balance channel". I ask the questions: does adding the expanded portfolio balance channel (PBC) to a macroeconomic model of quantitative easing #1) explain the evidence from the empirical literature on QE's financial market impacts? And #2) does the expanded PBC boost the macroeconomic effects of QE?

My main contribution in this paper is to expand the portfolio balance channel of QE by adding investors who arbitrage between the return on investing in corporate debt and the return on long term government bonds, to a Dynamic Stochastic General Equilibrium (DSGE) model with financial frictions. I find that QE directly impacts the cost of financing investment activity - it reduces corporate bond yields, and boosts the stock market, consistent with the empirical literature on the financial market effects of QE. The expanded PBC is also important to the macroeconomic effects of QE: driving 78% of the boost to output and 71% of the boost to inflation. Lastly, in contrast to earlier findings in the literature that suggest QE is weak away from the zero lower bound (ZLB), I find that QE maintains about 50% of its effect away from the ZLB.

¹https://www.newyorkfed.org/markets/programs-archive/large-scale-asset-purchases. I will refer to large-scale asset purchases (LSAPs) of long term US treasuries, and quantitative easing (QE) interchangeably in this paper. When using "QE" I am referring only to the purchase of longer term US treasuries.

In this paper I add the expanded portfolio balance channel into a DSGE model with a role for quantitative easing, augmented with financial frictions. I find that the second round of the Federal Reserve's Large-Scale Asset Purchase Program (LSAPII) boosted output between 0.51% and 1.69%. This range is based on the range of estimates of the elasticity of the term premium to QE purchases suggested by the empirical literature.

In my model I add the expanded portfolio balance channel by including investors who have a preferred habitat for long term assets: i.e. who arbitrage between holding a diversified set of loans to entrepreneurs (i.e. corporate bonds) and holding long term government bonds. Adding this channel is the key contribution of this paper, motivated by the empirical literature.

Quantitative Easing works in my model because of the addition of households which have a preference for longer term assets - the "preferred habitat" characterized by Vayanos and Vila (2009): so that changes in the relative supply of long-to-short term government bonds will impact the term premium. The model captures this with households who have a preferred ratio of long-to-short term government bonds - following Andrés, López-Salido and Nelson (2004). This preference is crucial to breaking Wallace's Irrelevance result (Wallace, 1981). This reduced-form approach to capturing the elasticity of the term premium to QE purchases is standard in the QE literature, see for example – Harrison (2012), Falagiarda (2014), Hohberger, Priftis and Vogel (2020) – and related to the approach in Chen et al. (2012).

The introduction of the financial friction is based on Christiano, Motto and Rostagno (2014), who build a costly state verification financial friction into a standard DSGE model a la Smets and Wouters (2007) and Christiano, Eichenbaum and Evans (2005). The costly state verification friction comes from Bernanke, Gertler and Gilchrist (1999): lenders can only view the balance sheet of a defaulted non-financial firm by paying a cost. This generates an external finance premium. Capital producing entrepreneurs receive idiosyncratic productivity shocks. A shock to the standard deviation of the productivity distribution is

called a "risk shock". Christiano et al. (2014) find that the variation of the risk shock over time is the most important driver of US business cycles. Del Negro and Schorfheide (2013) find the risk shock to have been an important factor during the Great Recession.

Using my model I can quantify the role of the financial friction in amplifying the expanded portfolio balance channel of quantitative easing. I find that the costly state verification financial friction is a quantitatively important amplifier of QE: it drives about 25% of the boost to output and 21% of the boost to inflation from LSAPII.

Related Literature The portfolio balance channel of quantitative easing has been used in the literature to describe a variety of portfolio balance behavior. That is generally the idea that economic agents will react to relative price changes in assets by adjusting their portfolios, but this can be affected by preferences over duration of assets. Adding frictions to the portfolio balancing of households is key to getting QE to works in DSGE models, see Harrison (2012) and Chen et al. (2012).

In a broader sense the portfolio balance channel includes the idea that purchases of longer maturity US Treasuries increase the price of other, substitute assets. Krishnamurthy and Vissing-Jorgensen (2011) emphasize that this second part of the portfolio balance effect can be driven in multiple ways, depending on which assets are substitutes for long term US Treasuries. This paper fits in the literature of papers that expand the portfolio balance channel in various ways. Priftis and Vogel (2016) expand the PBC by modeling the spillovers of QE purchases within the Euro Area. Alpanda and Kabaca (2020) model the open economy spillovers between the US and rest of the world. Alpanda and Kabaca (2022) also study portfolio rebalancing, however they focus on large scale asset purchases of equities.

The empirical literature motivates the expanded portfolio balance channel: Longstaff, Mithal and Neis (2005) use information from credit default swaps to quantify the portion of the yield spread not explained by default risk. The non-default related yield spread increases particularly for bonds rated below the investment grade threshold. Krishnamurthy and Vissing-Jorgensen (2011) emphasize that this is evidence of a "safety channel": i.e. there

are investors who arbitrage between long term US Treasuries and corporate debt rated Baa and above.

This paper relates to the work of Gertler and Karadi (2013) and Carlstrom, Fuerst and Paustian (2017) in that both examine the relationship between the financing conditions of investment activity and the yields on long term government bonds. Gertler and Karadi (2013) build a model where banks face a diversion constraint but government bonds are less divertible than claims on non-financial firms; notably they find that the zero lower bound is responsible for more than 80% of the effect of QE. In contrast I find that, though QE is boosted by the zero lower bound constraint, away from the ZLB it still maintains about 50% of its effect.

Carlstrom et al. (2017), though their primary focus is not on QE, build a model where financial intermediaries are the sole holders of long term debt and consider investment projects and long term government debt perfect substitutes. The term premium is positive because intermediaries face a simple "hold-up" problem financial constraint².

The empirical literature that finds a financial market effect of quantitative easing motivates the expanded portfolio balance channel modeled in this paper. Consistent with the expanded portfolio balance channel Goldstein, Witmer and Yang (2018) find that following QE purchases investors moved out of mutual funds that were focused on government securities and reinvested into riskier assets, including corporate bonds. Carpenter, Demiralp, Ihrig and Klee (2015) also find using, US Flow of Funds data, evidence consistent with portfolio rebalancing into assets other than government bonds following QE purchases. Joyce, Liu and Tonks (2017) find evidence that insurance companies and pension funds in the UK purchased corporate bonds following QE purchases by the Bank of England. Kim, Laubach and Wei (2020) find that the Federal Reserve's Large Scale Asset Purchase program lowered excess bond premiums and put upward pressure on equity prices.

²Carlstrom et al. (2017) mention that in their "hold-up" problem financial friction spreads will respond more to leverage relative to a costly state verification (CSV) framework. The model developed here shows that the effect of QE holds up quantitatively in a CSV framework.

Foley-Fisher, Ramcharan and Yu (2016) examine firms that are more dependent on long term debt. They find that around Maturity Extension Program (MEP)³ announcement dates those firms experienced an increase in their stock prices and issued more long term debt. They find that the dynamics of the risk premium on A- rated bonds was consistent with the pricing of long term preferred habitat investors. Additionally they find that firms increased employment and investment in response to the MEP and the increase was greater the more dependent the firm was on long term debt. Rogers, Scotti and Wright (2014) find that QE has a substantial impact on US stock prices: for an unconventional monetary policy surprise corresponding to a 25 basis point decline in the 10-year Treasury yield they find that the S&P increased 0.94%. They also find that corporate bond yields fall in response to QE purchases.

Lastly this paper relates to the literature on the ability of monetary policy to operate effectively at the zero lower bound (ZLB). If unconventional monetary policy is equally effective (relative to conventional policy) in moving output and inflation then the ZLB does not impact a central bank's ability to obtain its objectives: this is the "irrelevance hypothesis", characterized by Debortoli, Galí and Gambetti (2020). On the side of the debate that supports the irrelevance hypothesis: Swanson and Williams (2014) find that longer term yields continued to react as sensitively to macroeconomic news during the ZLB period (2008-2012) as in the benchmark period (1990-2000). Debortoli et al. (2020) find that the response of output, inflation and long term interest rates are "hardly" impacted by the ZLB binding. On the other side of the debate: Ikeda, Li, Mavroeidis and Zanetti (2020) find evidence against the irrelevance hypothesis. I find that a one-off Federal Funds Rate cut calibrated to match the peak in output driven by QE suggests that the second round of Federal Reserve Large-Scale Asset Purchases was the equivalent of a substantial Federal Funds Rate cut: between 83 and 279 basis points.

³The Maturity Extension Program involved the Federal Reserve selling short term US Treasuries to buy long term US Treasuries. The effect of the MEP is comparable to QE in that it changed the ratio of long to short term government bonds held by the public.

The paper proceeds as follows. Section 2 presents the model. Section 3 presents the data, calibration and simulation method. Section 4 presents the simulation of the Federal Reserve's second round of Large-Scale Asset Purchases & other results. Section 5 concludes.

2 The Model

The model in this paper follows the DSGE model with a costly state verification friction in Christiano, Motto and Rostagno (2014) ("CMR") closely. There are two key departures from CMR. The first departure is in the household's problem (section 2.1) - which implements QE⁴ following the literature (e.g. Harrison, 2012 and Chen et al., 2012). policy. The second departure is novel to this paper: I add investors who arbitrage between the entrepreneur's debt and long-term government bonds (section 2.3.2). The investors drive the new "expanded portfolio balance channel".

2.1 Households

All households are identical and large in number. Each household holds a large number of entrepreneurs and every type of differentiated labor. Households consume, invest to produce raw capital (which is then sold to entrepreneurs), buy and hold long and short term government bonds, supply labor, and receive labor income.

The representative household has the following utility function:

$$E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \log(C_t - bC_{t-1}) - \psi_L \int_0^1 \frac{h_{it}^{1+\sigma_L}}{1+\sigma_L} di - \frac{\tilde{\nu}}{2} \left(\frac{B_t^L}{B_t} - \delta^b \right)^2 \right\}, \tag{1}$$

where β is the household's discount rate, C_t is per capita consumption, b is the habit parameter, ψ_L is the dis-utility weight on labor, σ_L is the Frisch elasticity of labor supply, and h_{it} is labor supplied by labor type i. δ^b is the preferred ratio of long-to-short term government debt, $\tilde{\nu}$ governs the dis-utility from deviating from the preferred portfolio, and finally B_t and B_t^L are the market value of privately held short and long term government debt.

⁴Section 2.4 explains the implementation of the quantitative easing policy.

The final term in the household's utility function is the household's portfolio preference. Households have quadratic disutility over deviations from the preferred ratio of long-to-short term debt (δ^b) . I follow Harrison (2012), which builds on the work of Andrés et al. (2004). I calibrate δ^b to match the steady state ratio of long-to-short term government debt in the hands of the public. $\tilde{\nu} > 0$ implies that the term premium responds to changes in the household's relative holdings of short and long term government debt (this breaks Wallace's Irrelevance Result).

The household's budget constraint is:

$$P_{t}C_{t} + B_{t} + B_{t}^{L} + \frac{P_{t}}{\Upsilon^{t}\mu_{\Upsilon t}}I_{t} + Q_{\bar{K},t}(1-\delta)\bar{K}_{t}$$

$$\leq \int_{0}^{1} W_{it}h_{i,t}di + R_{t-1}B_{t-1} + R_{t}^{L}B_{t-1}^{L} + Q_{\bar{K},t}\bar{K}_{t+1} + \Pi_{t},$$
(2)

where P_t is the price of the consumption good, I_t is the quantity of investment goods purchased by the household for a price $P_t/(\Upsilon^t \mu_{\Upsilon t})$ ($\mu_{\Upsilon t}$ is a shock to investment technology, and Υ^t is trend growth in investment technology), $\bar{Q}_{\bar{K},t}$ is the price of raw capital, \bar{K}_{t+1} is end of period t raw capital, δ is the depreciation rate of capital, W_{it} is the wage rate for labor type i, R_{t-1} is the rate paid on short term bonds issued in t-1 maturing in t, and R_t^L is the rate paid on long term bonds issued in t-1 maturing in t and t includes transfers from entrepreneurs and intermediate goods producers, and transfers to and from investors.

I base the model's treatment of the bond market on Harrison (2012). There are two types of government bonds: short, and long. Short bonds sell for a unit price at time t, and return R_t units of currency at time t+1. Long bonds are perpetuities that exist for an infinite number of periods (unless the government removes them from the market). They provide a coupon payment of 1 unit of currency each period, and have a value V_t at time t. In each period t, after making the coupon payment, the government rolls over its debt by purchasing the entire stock of long term debt (B_{t-1}^c) at the market price V_t and issuing new consol bonds B_t^c which are purchased by households for the market price V_t . $R_t^L \equiv (1 + V_t^L)/V_{t-1}^L$ is the

gross return at time t on a long bond sold at time t-1. $B_t^L \equiv V_t B_t^c$ is the total nominal value of long bonds at time t. Note the timing: V_t^L is unknown at time t-1; therefore R_t^L is not known for certain until time t.

When investing in raw capital the household faces the following law of motion:

$$\bar{K}_{t+1} = (1 - \delta)\bar{K}_t + \left[1 - S\left(\frac{I_t}{I_{t-1}}\right)\right]I_t.$$
(3)

The investment adjustment cost function S has the functional form:

$$S(x_t) \equiv \frac{1}{2} \left\{ \exp\left[\sqrt{S''}(x_t - x)\right] + \exp\left[-\sqrt{S''}(x_t - x)\right] - 2 \right\},\tag{4}$$

where $x_t \equiv \frac{I_t}{I_{t-1}}$ and $S'' \equiv S''(x)$ is a parameter calibrated to match the dynamics of investment.

2.2 Production Markets

2.2.1 Goods Market

Each intermediate good, Y_{jt} , $j \in [0,1]$ is produced by a different monopolist according to the following production function:

$$Y_{jt} = \begin{cases} \epsilon_t K_{jt}^{\alpha} (z_t l_{jt})^{(1-\alpha)} - \Phi z_t^*, & \text{if } \epsilon_t K_{jt}^{\alpha} (z_t l_{jt})^{(1-\alpha)} > \Phi z_t^* \\ 0, & \text{otherwise} \end{cases}$$

$$(5)$$

where the capital share $\alpha \in (0,1)$ and ϵ_t is a technology shock (that is covariance stationary). K_{jt} is the quantity of effective capital used by monopolist producer j, and l_{jt} the quantity of homogeneous labor employed by monopolist producer j. z_t is an effective labor shock which has a stationary growth rate. The proportional fixed cost Φz_t^* is such that the intermediate monopolistic producer earns zero profits in steady state. Below I describe the detrending term z_t^* in more detail.

There is a Calvo friction in the pricing of intermediate goods. Each period a random fraction of intermediate firms, $1 - \xi_p$, can reoptimize their price P_{jt} . The remaining fraction ξ_p set their price as follows:

$$P_{it} = \tilde{\pi}_t P_{i,t-1},\tag{6}$$

where inflation indexation is as follows:

$$\tilde{\pi}_t = \left(\pi_t^{target}\right)^{\iota} \left(\pi_{t-1}\right)^{1-\iota}.\tag{7}$$

 $\pi_{t-1} \equiv P_{t-1}/P_{t-2}$ is gross inflation. And π_t^{target} is the central bank's target inflation rate. ι is the price indexing weight on the inflation target.

The homogeneous final good Y_t , is produced by a competitive representative firm (with Dixit-Stiglitz technology):

$$Y_t = \left[\int_0^1 Y_{jt}^{\frac{1}{\lambda_f}} dj \right]^{\lambda_f}, \ 1 \le \lambda_f < \infty, \ j \in [0, 1].$$
 (8)

The homogeneous final good has two uses: consumption and investment. One unit of Y_t can be converted into one unit of the consumption good C_t , and thus (given perfect competition in the use of this technology) consumption has the price P_t . One unit of Y_t can also be converted into $\Upsilon^t \mu_{\Upsilon,t}$ units of the investment good, and thus (again given perfect competition in the use of the technology) has the price $P_t/(\Upsilon^t \mu_{\Upsilon,t})$, where $\Upsilon > 1$.

There are two sources of growth in the model. First, the trend rise in the aforementioned technology for producing investment goods, Υ^t , and second, the effective labor shock z_t which has a stationary growth rate. The de-trending term z_t^* is a combination of both sources of growth:

$$z_t^* = z_t \Upsilon^{\left(\frac{\alpha}{1-\alpha}\right)t}. (9)$$

 z_t^* is used to normalize variables to find a non-stochastic steady state. z_t^* is such that Y_t/z_t^* will converge to a constant in the non-stochastic steady state of the model. $\mu_{z,t}^* \equiv z_t^*/z_{t-1}^*$ is the growth rate of z_t^* , which has the stationary growth rate μ_z^* .

2.2.2 Labor Market

Each differentiated labor type type $i \in [0,1]$ provides labor services h_{it} and is represented by a monopoly union that sets its wage rate W_{it} while facing a Calvo friction. Each period a fraction $1 - \xi_w$ of the monopoly unions can update the wage. The remaining fraction ξ_w set their wage as follows:

$$W_{it} = \left(\mu_{z,t}^*\right)^{\iota_{\mu}} \left(\mu_z^*\right)^{1-\iota_{\mu}} \tilde{\pi}_{wt} W_{i,t-1}, \tag{10}$$

where:

$$\tilde{\pi}_{wt} \equiv \left(\pi_t^{target}\right)^{\iota_w} \left(\pi_{t-1}\right)^{1-\iota_w}, \qquad 0 < \iota_w < 1. \tag{11}$$

Labor is aggregated via a Dixit-Stiglitz style aggregator by a competitive and representative labor contractor:

$$l_t = \left[\int_0^1 (h_{it})^{\frac{1}{\lambda w}} di \right]^{\lambda_w}, \qquad 1 \le \lambda_w.$$
 (12)

The homogeneous labor aggregate l_t is sold to intermediate goods producers at the nominal wage W_t .

2.3 Entrepreneurs

Entrepreneurs turn raw capital (purchased from households) into effective capital (to be then sold to intermediate goods producers). Entrepreneurs experience idiosyncratic productivity shocks to their ability to turn raw capital into productive capital. Entrepreneurs finance the purchase of raw capital via debt, and entrepreneurs who experience low idiosyncratic productivity shocks default on their debt. Entrepreneurs' creditors can only observe the state of a defaulted entrepreneur's balance sheet by paying a proportional recovery cost. The expectation of paying this cost introduces a spread on entrepreneurial debt. This is the Costly State Verification (CSV) financial friction characterized in Bernanke, Gertler and Gilchrist (1999) and Christiano, Motto and Rostagno (2014).

Entrepreneurs' aggregate net worth is considered a proxy for the value of the stock market. Entrepreneurs can either be interpreted as being firms in the non-financial sector, or financial institutions with non-diversified holdings. An entrepreneur with net worth $N \geq 0$ is an 'N-type' entrepreneur. Following production in period t, each entrepreneur gets a loan from a mutual fund. Each mutual fund is specialized. They make loans only to entrepreneurs of a specific level of net worth, but perfectly diversify by holding a large number of those loans. The entrepreneur combines the loan $B_t^{N,credit}$ (issued in period t and due in period t+1) with their own net worth to purchase raw capital (\bar{K}_{t+1}^N) at price $Q_{\bar{K},t}$:

$$B_t^{N,credit} + N = Q_{\bar{K},t}\bar{K}_{t+1}^N.$$
 (13)

After raw capital is purchased each entrepreneur receives an idiosyncratic shock ω that determines the amount of effective capital they have, $\omega \bar{K}_{t+1}^N$. As in Bernanke et al. (1999) and Christiano et al. (2014), ω is distributed (independently across entrepreneurs and time) log-normally with a unit mean and a standard deviation $\sigma_t \equiv \sqrt{var(\log \omega)}$. The risk shock σ_t is simply the extent of cross-sectional dispersion of idiosyncratic productivity shocks experienced by entrepreneurs.

After realizing the risk shock entrepreneurs choose the utilization rate of effective capital u_{t+1}^N to maximize their return on capital: ωR_{t+1}^k at the end of period t+1. Entrepreneurs supply $u_{t+1}^N \omega \bar{K}_{t+1}^N$ units of effective capital to intermediate goods producers at the market rental rate r_{t+1}^k . The following defines the return on capital:

$$R_{t+1}^{k} \equiv \frac{[u_{t+1}r_{t+1}^{k} - a(u_{t+1})]\Upsilon^{-(t+1)}P_{t+1} + (1-\delta)Q_{\bar{K},t+1}}{Q_{\bar{K},t}}.$$
 (14)

The choice of utilization is independent of net worth, so the N superscript is dropped. The utilization cost of capital, $a(u_t)$, is increasing and convex:

$$a(u_t) \equiv \frac{r_t^k}{\sigma_a} \Big[\exp\Big(\sigma_a(u_t - 1)\Big) - 1 \Big]. \tag{15}$$

In addition to the utilization choice entrepreneurs must also choose the type of debt contract to accept. It is each entrepreneur's objective to maximize their expected net worth in the next period (t+1), which is as follows:

$$E_{t} \left\{ \int_{\bar{\omega}_{t+1}}^{\infty} \left[R_{t+1}^{k} \omega Q_{\bar{K}, t} \bar{K}_{t+1}^{N} - B_{t}^{N, credit} Z_{t+1} \right] dF(\omega, \sigma_{t}) \right\}$$

$$= E_{t} \left[1 - \Gamma(\bar{\omega}_{t+1}) \right] R_{t+1}^{k} L_{t} N, \tag{16}$$

where $\Gamma_t(\bar{\omega}_{t+1}) \equiv \left[1 - F_t(\bar{\omega}_{t+1})\right] \bar{\omega}_{t+1} + G_t(\bar{\omega}_{t+1})$ is the fraction of expected earnings paid to the investor, $1 - F_t(\bar{\omega}_{t+1})$ is the probability the entrepreneur experiences a idiosyncratic shock over the default threshold $\bar{\omega}_{t+1}$, and F(.) is the cumulative distribution function of ω . Z_{t+1} is the gross nominal interest rate on debt. $G_t(\bar{\omega}_{t+1})$ is the expected value of the idiosyncratic shock in the population of defaulting entrepreneurs:

$$G_t(\bar{\omega}_{t+1}) \equiv \int_0^{\bar{\omega}_{t+1}} \omega dF_t(\omega), \tag{17}$$

where $L_t \equiv (Q_{\bar{K},t}\bar{K}_{t+1}^N)/N$ is the entrepreneur's leverage. Entrepreneurs maximize (16) by choosing: (a) the level of the idiosyncratic shock ω below which they will default $(\bar{\omega}_{t+1})$, or equivalently the gross nominal interest rate on debt to be paid next period (Z_{t+1}) , and (b) the amount of leverage L_t they will take on, subject to the set of debt contracts that mutual funds are willing to provide (equation 20). The following defines the default threshold:

$$\bar{\omega}_{t+1} \equiv \frac{B_t^{N,credit} Z_{t+1}}{R_{t+1}^k Q_{\bar{K},t} \bar{K}_{t+1}^N}.$$
 (18)

2.3.1 Mutual Funds

As in Christiano et al. (2014) each mutual fund specializes in loans to N-type entrepreneurs, and is perfectly diversified by holding a large number of N-type loans. They sell packaged entrepreneurial debt to investors, which has the return $R_{t+1}^{N,credit}$.

$$\left[1 - F_t(\bar{\omega}_{t+1})\right] Z_{t+1} B_t^{N,credit} + (1 - \mu) \int_0^{\bar{\omega}_{t+1}} \omega dF_t(\omega) R_{t+1}^k Q_{\bar{K},t} \bar{K}_{t+1}^N = R_{t+1}^{N,credit} B_t^{N,credit}.$$
(19)

If an entrepreneur experiences an idiosyncratic shock ω below the threshold $\bar{\omega}_{t+1}$, they will declare bankruptcy. In this instance the mutual fund only knows that the entrepreneur is bankrupt, but does not observe the value of ω . Without further action by the mutual fund the entrepreneur could decide to transfer only a fraction of their remaining assets, $\omega R_{t+1}^k Q_{\bar{K},t} \bar{K}_{t+1}^N$, back to the mutual fund. In order to become fully informed about the assets a bankrupt entrepreneur has, the mutual fund must pay a cost that is a proportion μ of the final assets recovered. Thus the mutual fund only receives a fraction $(1 - \mu)$ of the total assets of bankrupt entrepreneurs.

The following condition (20) characterizes the available menu of contracts entrepreneurs can choose from. This comes from using the definition of the default threshold (18) to substitute out $Z_{t+1}B_t^{N,credit}$ in the mutual funds' zero profit condition (19).

$$\Gamma_t(\bar{\omega}_{t+1}) - \mu G_t(\bar{\omega}_{t+1}) = \frac{L_t - 1}{L_t} \frac{R_{t+1}^{N,credit}}{R_{t+1}^k}.$$
 (20)

Note that net worth N does not enter in (20): all entrepreneurs select the same contract, irrespective of net worth, and the return on their packaged debt is the same for all N:

$$R_{t+1}^{N,credit} = R_{t+1}^{credit}. (21)$$

2.3.2 Investors

Investors are agents in the economy who arbitrage between long term government bonds and perfectly diversified entrepreneurial debt (B_t^{credit}) :

$$B_t^{credit} \equiv \int_0^\infty B_t^{N,credit} f_t(N) dN. \tag{22}$$

Each investor i receives a transfer τ_t^i from their household each period and transfers their profits back to the household in the following period⁵. Investor i's problem is to maxi-

 $[\]overline{^{5}}$ At time t the household transfers τ_{t} to investors in aggregate, and receives $R_{t}^{L}B_{t-1}^{L} + R_{t}^{credit}B_{t}^{credit}$ from investors. This enters the household's budget constraint in the Π_{t} term (as $R_{t}^{L}B_{t-1}^{L} + R_{t}^{credit}B_{t}^{credit} - \tau_{t}$).

mize their expected profit (23) choosing long term government bonds $(B_t^{L,i})$ and diversified entrepreneurial debt $(B_t^{credit,i})$:

$$\max_{B_t^{L,i}, B_t^{credit,i}} E_t \left\{ \Lambda_{t,t+1} \left(R_{t+1}^L B_t^{L,i} + R_{t+1}^{credit} B_t^{credit,i} \right) \right\}$$
(23)

subject to their balance sheet identity:

$$\tau_t^i = B_t^{L,i} + B_t^{credit,i}. (24)$$

The investor's optimality condition implies that the expected spread between the return on diversified entrepreneurial debt and the return on the long term government bond is zero⁶:

$$E_t \Lambda_{t,t+1} \left[R_{t+1}^{credit} - R_{t+1}^L \right] = 0, \tag{25}$$

where $\Lambda_{t,t+1}$ is the household's stochastic discount factor⁷.

The existence of these investors in the model generates the expanded portfolio balance channel: when the rate on long term government debt falls, investors are willing to hold packaged entrepreneurial debt (i.e. corporate debt) at a lower rate. This in turn relaxes the credit conditions that mutual funds are able to provide to entrepreneurs. Though the entrepreneurial debt contracts themselves are not long term this captures in reduced form the idea that there are investors in the economy who have a preferred habitat preference for long duration assets.

There is empirical evidence that certain investors have a preferred habitat for long term assets, particularly for investment grade corporate bonds. Insurance companies are long term preferred habitat investors because they must match the duration of their assets and

⁶Clearly this is a strong assumption for two reasons. One, in the data there is a spread between corporate debt yields and US Treasury yields - meaning that there are likely frictions between government debt and corporate debt, and two, the empirical evidence that supports a preferred habitat preference over bond maturity does not extend to all corporate debt. The evidence in Longstaff, Mithal and Neis (2005) supports the preferred habitat only extending to corporate debt rated above Baa. Appendix E.3 tests the robustness of this assumption.

 $^{^{7}\}Lambda_{t,t+1} \equiv \beta \lambda_{t+1}/\lambda_{t}$

liabilities. The capital equity requirements that they face increase between bonds rated A- and above, and bonds below that threshold. Foley-Fisher et al. (2016) find that in response to the Maturity Extension Program (MEP) the risk premium on A- rated bonds fell, whereas the risk premium on BBB+ rated bonds did not, suggesting a direct preferred habitat spillover effect from the MEP program⁸. Furthermore they find support for the "gap-filling" hypothesis: that is the idea that firms that are able to issue longer term debt respond to the combination of QE purchases and demand for long term debt from investors by increasing their issuance of long term debt. Longstaff et al. (2005) find evidence for preferred habitat preferences in the bond market extending to corporate bonds rated BAA and above.

This setup is a departure from Christiano et al. (2014), where the assumption is that mutual funds package entrepreneurial debt and sell it directly to households. In their model the relative outside rate is the short term policy rate, this is equivalent to a setup where investors arbitrage between diversified entrepreneurial debt and short term government bonds ("Short Maturity Investor"). Section 4.5 shows the simulation of LSAPII in the baseline model versus the "Short Maturity Investor" model.

2.3.3 Aggregates

Aggregate raw capital:

$$\bar{K}_{t+1} = \int_0^\infty \bar{K}_{t+1}^N f_t(N) dN.$$
 (26)

Aggregate effective capital:

$$K_t = \int_0^\infty \int_0^\infty u_t^N \omega \bar{K}_t^N f_{t-1}(N) dF(\omega) dN = u_t \bar{K}_t.$$
 (27)

Aggregate net worth:

$$N_{t+1} = \int_0^\infty N f_t(N) dN. \tag{28}$$

⁸The Maturity Extension Program involved the Federal Reserve selling short term US Treasuries to buy long term US Treasuries. The effect of the MEP is comparable to QE in that it changed the ratio of long to short term government bonds held by the public.

Aggregate credit:

$$B_t^{credit} = \int_0^\infty B_t^{N,credit} f_t(N) dN = \int_0^\infty \left[Q_{\bar{K},t} \bar{K}_{t+1}^N - N \right] f_t(N) dN = Q_{\bar{K},t} \bar{K}_{t+1} - N_{t+1}.$$
 (29)

Finally the evolution of aggregate net worth is:

$$N_{t+1} = \gamma \left[1 - \Gamma_{t-1}(\bar{\omega}_t) \right] R_t^k Q_{\bar{K},t-1} \bar{K}_t + W^e, \tag{30}$$

where γ is the fraction of entrepreneurs that continue each period (a fraction $1 - \gamma$ exit and pay dividends to the household), and W^e is the transfer from the household to new entering entrepreneurs.

2.4 Government Policies

As in Chen et al. (2012) the government has an auto-regressive supply rule for the market value of de-trended long term bonds ($b_t^L \equiv B_t^L/(P_t z_t^*)$):

$$\log\left(\frac{b_t^L}{b^L}\right) = \rho_{bL}\left(\frac{b_{t-1}^L}{b^L}\right) + u_t^{bL}.$$
(31)

 u_t^{bL} is the sum of unanticipated and anticipated news shocks to the supply of long term government bonds:

$$u_t^{bL} \equiv \epsilon_t^{bL} + \xi_{1,t-1}^{bL} + \dots + \xi_{8,t-8}^{bL}. \tag{32}$$

The government budget constraint is:

$$B_t + B_t^L = R_{t-1}B_t + R_t^L B_{t-1}^L + G_t - T_t, (33)$$

where G_t is nominal government spending, and T_t is nominal government taxation. Government spending is:

$$\frac{G_t}{P_t z_t^*} = g, (34)$$

where the level of real de-trended government spending, g, is fixed to be 20% of steady state

output.

I adapted the fiscal rule from Davig and Leeper (2006) and Eusepi and Preston (2011):

$$\frac{T_t}{P_t z_t^*} - \frac{G_t}{P_t z_t^*} = \kappa \left(\frac{b_{t-1} + b_{t-1}^L}{b^L + b}\right)^{\phi_T} \epsilon_t^T, \tag{35}$$

where κ is the steady state primary fiscal surplus, and ϕ_T is set high enough so that the primary surplus adjusts to satisfy the government inter-temporal budget constraint and where b_{t-1} and b_{t-1}^L are the real de-trended market value of short and long term bonds respectively $(b_t \equiv B_t/(P_t z_t^*))$.

2.5 Monetary Policy & Resource Constraint

2.5.1 Monetary Policy Rule

The central bank sets the policy rate according to a backward-looking Taylor Rule:

$$\log\left(\frac{R_t}{R}\right) = \rho_m \log\left(\frac{R_{t-1}}{R}\right) + (1 - \rho_m) \left[\phi_\pi \log\left(\frac{\pi_t}{\pi_t^{target}}\right) + \frac{\phi_y}{4} \left(\log\frac{Y_t}{Y_{t-1}} - \log\mu_z^*\right)\right] + \frac{1}{400}u_t^m, \tag{36}$$

where μ_z^* is the steady state growth of output. u_t^m is the sum of unanticipated and anticipated (news) monetary policy shocks:

$$u_t^m \equiv \epsilon_t^m + \xi_{1,t-1}^m + \dots + \xi_{8,t-8}^m, \tag{37}$$

where ϵ_t^m is the unanticipated monetary policy shock. And $\sum_{p=1}^{p=8} \xi_{p,t-p}^m$ is the sum of anticipated monetary policy shocks.

2.5.2 The Resource Constraint

$$Y_{t} = G_{t} + C_{t} + \frac{I_{t}}{\Upsilon^{t} \mu_{\Upsilon, t}} + a(u_{t}) \Upsilon^{-t} \bar{K}_{t} + \Theta \frac{1 - \gamma}{\gamma} (N_{t+1} - W^{e}) + D_{t},$$
 (38)

where $a(u_t)\Upsilon^{-t}\bar{K}_t$ is the aggregate capital utilization cost of entrepreneurs. $\Theta(1-\gamma)(N_{t+1}-W^e)/\gamma$ are the resources consumed by exiting entrepreneurs⁹. The resources expended on monitoring entrepreneurs are:

$$D_t \equiv \frac{\mu G_{t-1}(\bar{\omega}_t) R_t^k Q_{\bar{K},t-1} \bar{K}_t}{P_t}.$$
(39)

3 Data, Calibration & Simulation Method

3.1 Data & Calibration

The target period for calibration is 1985Q1 to 2007Q3. Appendix C describes the data.

Table 1 lists the steady state targets. The calibrations corresponding with these targets are in appendix C table 6. I calibrate the households' discount rate β to match the period average of the Effective Federal Funds Rate. I fix the ratio of government bonds held by the public to output in steady state to match the data. I set δ^b to match the period average of the ratio of long-to-short term government bonds held by the public. I define long term debt as any government bond with over 1 year until maturity, and short term debt to include reserves. I set government spending in steady state to 20% of quarterly output, in line with the target in Christiano et al. (2014). I set ψ_L to target steady state hours worked (h) equal to 1. Steady state inflation is 2%.

 $\nu \equiv \tilde{\nu}\delta^b(1+\delta^b)/(\lambda_z b)$ is the elasticity of the term premium to changes in the relative supply of long term government bonds¹⁰ (see appendix D). The target range is a 3 to 10 basis point drop in the term premium in response to a \$100 billion reduction in the supply of long term government bonds available to the public (with an equal increase in reserves). Section 4.1 discusses this range further.

I fix the parameters in table 2 according to the calibration or posterior modes in Christiano et al. (2014). I specify all shock processes as log AR(1)'s. Table 3 specifies their

⁹While this term $(\Theta(1-\gamma)(N_{t+1}-W^e)/\gamma)$ does not appear in the main text of Christiano et al. (2014) it does appear in their replication code and online appendix.

¹⁰Where $\tilde{\nu}$ is the parameter in the household's utility function (eq 1) that determines their disutility from deviating from the preferred ratio of long-to-short term government debt.

persistence parameters.

3.2 Simulation Method

The model is solved in Dynare (Adjemian et al., 2022) using the first-order linearized version of the model. News shocks are used to introduce the QE shocks as well as forward guidance on the path of the federal funds rate. Appendix B explains the implementation of the news shocks in detail.

4 Simulations

4.1 LSAPII

Following Chen et al. (2012) I simulate the second round of the Federal Reserve's large-scale asset purchase program (LSAPII) with purchases taking place over 2 quarters, held for 4 quarters, and unwound over 8 quarters¹¹. The full path of purchases (figure 1) is known upon announcement of the program. I constrain the response of the federal funds rate for four quarters, this is anticipated (forward guidance¹²). I implement both the announced path of purchases and forward guidance on the policy rate using news shocks. Appendix C describes the mapping between the size of the \$600 billion in purchases to long bond supply shocks.

Empirical estimates of QE's "stock effects" - i.e. the impact on bond prices from the semi-permanent reduction of bond supply within a given maturity - suggest that the Federal Reserve's various rounds of LSAP purchases reduced term premiums between 3 and 10 basis points per \$100 billion of long term bond purchases. On the upper range of the estimates D'Amico and King (2013) find that LSAPI on average decreased yields within a

¹¹Note: this was obviously not what happened ex-post following LSAPII in the data (as the bond purchases were unwound much more slowly). I could extend the expected duration of QE purchases by adjusting the news shocks. This would amplify the effect of QE as the ratio of long-to-short term government bonds would be below its steady state value for longer, meaning the term spread would be lower for longer, increasing stimulus to the economy.

¹²In appendix E.2 I implement the zero interest rate policy (i.e. keeping the FFR at the ZLB for 4 quarters) using surprise monetary policy shocks, as a robustness exercise.

given maturity by 1 basis point per \$10 billion in long term bond purchases. On the lower range Hamilton and Wu (2012) find that a \$400 billion purchase of long term government bonds could reduce the 10-year rate by 13 basis points when the policy rate is at the zero lower bound.

I calibrate ν to match these estimates of the elasticity of the term premium to purchases (appendix D discusses the calibration strategy in detail). This gives a range of 0.00074 -0.0025. Figures 2 and 3 show the range of results. The output growth peak is between 0.51%- 1.69%. Output 6 years after the start of the LSAPII program is between 0.26% - 0.86% above its steady state level. Inflation increases between 28 and 94 basis points. Comparing these results to the narrow portfolio balance channel results (see section 4.5) indicates that expanding the portfolio balance channel is important to match the empirical evidence on inflation. The response of inflation to LSAPII here is comparable to Baumeister and Benati (2013) who find LSAPII increased inflation by 1%. Entrepreneurs' aggregate net worth (a proxy for the stock market) increases between 2.6 - 8.5\%, exceeding the empirical evidence in Rogers et al. (2014) which suggest¹³ an increase between 0.7 - 2.3% (scaling up their results based on the reduction of the term premium in the LSAPII simulation here). The dynamics of entrepreneurs' net worth in the convenience yield extension in appendix E.3 is qualitatively closer to the empirical results on the response of the stock market found by Rogers et al. (2014). Lastly LSAPII drives the credit spread down by between 8 and 28 basis points.

4.1.1 QE Mechanisms

In this paper the households' preference for an ideal ratio of long to short term government bonds in the representative household's utility function captures the idea that certain agents prefer to hold longer maturity assets ("preferred habitat") as characterized by Vayanos and Vila (2009). This means per period returns on short vs long term assets are not fully

 $^{^{13} \}rm They$ estimate that the S&P increased 0.94% for 25 basis point reduction in the 10 year Treasury yield. Here the long term government bond rate falls between 18 - 60 basis points.

arbitraged away, leading to a term premium for long term government bonds. This is a subset of the "Safety Channel" described by Krishnamurthy and Vissing-Jorgensen (2011): the preferred habitat is restricted to the near zero default risk assets, in this case only US Treasury bonds. This channel breaks Wallace's Irrelevance result, meaning that the term premium changes in response to changes in the relative supply of long vs short term government bonds. The term premium elasticity ν captures the strength of this channel and, as can be seen in the lower left panel of figure 3, impacts how much the term premium drops in response to the LSAPII purchases. In a model with only this effect, for example Chen et al. (2012), QE acts solely via changing households' consumption and investment decisions via the long term bond Euler. Chen et al. (2012) find this effect alone is quantitatively limited.

Adding the Entrepreneurial sector, and investors who arbitrage between long term government debt and packaged entrepreneurial debt, expands the Portfolio Balance Channel and the role of preferred habitat. A decline in the long term government bond yield spills over into a general decline in the cost of corporate borrowing. Longstaff, Mithal and Neis (2005) show that this effect probably only exists for investment grade corporate debt (i.e. above Baa), that is: Krishnamurthy and Vissing-Jorgensen (2011)'s Safety channel including investment grade corporate debt. Krishnamurthy and Vissing-Jorgensen (2011) classify a general spillover effect as the "Duration Risk Channel". Investor preferences in the model here capture both the Safety Channel and Duration Risk Channel: because investors hold a perfectly diversified aggregate of corporate (i.e. entrepreneurs') debt. Given the relatively weak empirical support for the Duration Risk Channel, I explore including a friction in the arbitrage between corporate debt and US Treasuries in appendix E.3.

The expanded Portfolio Balance Channel interacts with a "Default Risk Channel" characterized by Krishnamurthy and Vissing-Jorgensen (2011). Lower borrowing costs mean that fewer entrepreneurs default. Note, entrepreneur's default if their idiosyncratic productivity draw is below the default threshold, so a lower default threshold due to QE (see figure 2)

means fewer defaulting entrepreneurs. This, via the costly state verification friction, lowers the spread charged on individual entrepreneurial debt contracts further, boosting net worth and accelerating the effects of QE via a reduction in the external finance premium (see section 4.4). Additionally QE has an inflationary impact, which means that *real* rates fall further.

A partial and a general equilibrium effect drive the dynamics of credit in different directions. QE reduces the term premium, which reduces the long term interest rate on government bonds especially when the policy rate is constrained. Because investors arbitrage between corporate and long term government debt this lowers the cost of borrowing for entrepreneurs.

The partial equilibrium effect is to stimulate credit demand, because credit is cheaper. Furthermore, because credit is cheaper more entrepreneurs can repay their debt, so in aggregate entrepreneurial net worth increases. Now entrepreneurs have more "skin in the game", so due to the costly state verification friction the credit spread compresses, amplifying further the effect of QE.

In general equilibrium the lower cost of borrowing in addition to higher net worth drives entrepreneurs to invest more. This leads to a jump in the price of capital upon impact of the QE shock, with the expectation that the price of capital will eventually return to steady state. Christiano et al. (2014) emphasize that this expected decline in the price of capital mutes the entrepreneurs incentives to take on credit. This effect is particularly pronounced initially. That is why credit responds by less than net worth, and so leverage falls in response to shocks that improve conditions for entrepreneurs (including the QE shock).

4.2 LSAPII vs FFR Cut Equivalence

The simulated LSAPII program produces the same boost to output as a 83 to 279 basis point cut to the federal funds rate, corresponding to the lower and upper ranges for the elasticity of the term premium to QE purchases (i.e. ν calibration). Figures 4 and 5 show the response

of the economy to the LSAPII program versus a federal funds rate cut calibrated to generate the same peak growth in output.

Unsurprisingly inflation growth is roughly comparable across the two simulations. Investment responds slightly more to the federal funds rate cut (between 0.12 and 0.39 percentage points).

The impact on entrepreneurial credit conditions is substantially different between QE and the equivalent federal funds rate cut, highlighting the different channels through which these two policies act. Under quantitative easing, credit drops slightly (between 0.06 - 0.19% below its steady state level) once the forward guidance constraint on the federal funds rate is lifted. In contrast under the federal funds rate cut simulation credit drops between 0.37 - 1.24% below its steady state value (as the policy rate is normalized). The drop in the long rate is front-loaded under the FFR cut. This mean that the general equilibrium effect driven by the expected decline in the price of capital is stronger, muting credit more.

4.3 Importance of Zero Interest Rate Policy

In the baseline LSAPII simulation ("Forward Guidance") news shocks to the Taylor Rule keep the federal funds rate at its steady state level for four quarters. In the "FFR Unconstrained" simulation the federal funds rate is unconstrained. In figures 6 and 7 it is clear that the forward guidance amplifies the stimulus effect of QE. Output growth is between 0.24 and 0.79 percentage points higher under forward guidance than no forward guidance. Inflation is between 14 and 47 annualized basis points higher under QE with forward guidance than QE without forward guidance. Forward guidance amplifies QE's effect on the credit spread: it falls by about 10 basis points more (at the median value for the elasticity of the term premium, ν) with forward guidance than without.

The intuition is simple: QE is inflationary and expansionary. If the short rate is not constrained, the Taylor Rule drives the central bank to raise rates in response to the effects of the QE program: moderating QE's stimulus effect but does not qualitatively change the

impact of QE on most series.

The exception here is the response of credit. Without forward guidance ("FFR Unconstrained") the increase in the federal funds rate is front-loaded. And because the federal funds rate is never constrained the long term government bond rate does not experience as dramatic a decline. This substantially mutes the on impact response of entrepreneurial net worth (a 2.5% jump over steady state as compared to 5.6%, at the median ν value). A lower net worth means that the entrepreneurs rely initially more on credit.

4.4 The Costly State Verification Friction Amplifies QE

The CSV friction boosts output growth between 0.13 and 0.44 percentage points, relative to the LSAPII simulation without the friction ($\mu = 0$, "No CSV"). The CSV friction boosts inflation between 6 and 20 annualized basis points and boosts investment between 0.59 and 1.94 percentage points.

Note that in the "No CSV" model the spread between the expected return on capital and the long term government bond rate is zero¹⁴. So even in the "No CSV" model results presented in figure 8 QE has a strong quantitative impact because the long term interest rate is directly related to the return on capital, and QE directly depresses the long term interest rate.

4.5 Impact of Investors' Preferred Habitat Preferences

The following repeats the baseline QE simulation (LSAPII + ZLB constraint) in a version of the model where investors arbitrage between diversified entrepreneurial debt and short term government bonds ("Short Maturity Investor"). These results (figures 9 & 10) indicate that expanding the portfolio balance channel to include corporate debt¹⁵ boosts the quantitative

¹⁴The entrepreneur's optimal choice of the default rate is reduced to $E\left[R_{t+1}^k - R_t^L\right] = 0$. In the Christiano et al. (2014) model this condition will be $E\left[R_{t+1}^k - R_t\right] = 0$. Without the portfolio preference, this would be equivalent to a standard DSGE model (e.g. Christiano et al. (2005)) where households choose capital investment.

¹⁵In the language of Krishnamurthy and Vissing-Jorgensen (2011): the Safety Channel and Duration Risk Channel.

impact of QE substantially. In the baseline model output growth is between 0.4 - 1.34 % points more than in the Short Maturity Investor model. In the baseline model inflation is between 20 and 68 annualized basis points more than in the Short Maturity Investor model. Dropping investors' preferred habitat for long term assets completely eliminates the lagged positive response of credit.

The only series that is not substantially dampened is consumption. QE does have a role without the expanded portfolio balance channel – in impacting the inter-temporal consumption decisions of households via the Euler equation for long bonds. But as shown by Chen et al. (2012) this effect is quantitatively limited. These results indicate that the addition of the costly state verification financial friction alone does not substantially boost this effect.

5 Conclusion

I find that the second round of the Federal Reserve's Large Scale Asset Purchase Program (LSAPII) boosted output between 0.51% and 1.69% and inflation by 28 to 94 annualized basis points. Expanding the portfolio balance channel to include investors who have preferred habitat preferences for long term assets (both government and corporate debt) drives a substantial portion of the effect of QE (78% of the boost to output and 71% of the boost to inflation). QE purchases reduce corporate bond yields and default rates, and increase equity prices.

Financial frictions, in this case the costly state verification friction developed by Bernanke et al., 1999, play an important quantitative role in amplifying the effect of QE: about 25% of the boost to output and 21% of the boost to inflation. QE is more effective when the short rate is constrained (i.e. at the zero lower bound) but still has a quantitatively important impact on output and inflation away from the zero lower bound: 46% of the boost to output and 50% of the boost to inflation remains. Lastly, LSAPII is the equivalent of a substantial cut to the Federal Funds Rate (between 83 - 279 annualized basis points). When the zero lower bound binds central banks can continue to achieve their objectives via the use of unconventional monetary policy.

References

- Adjemian, Stéphane, Houtan Bastani, Michel Juillard, Fréderic Karamé, Ferhat Mihoubi, Willi Mutschler, Johannes Pfeifer, Marco Ratto, Normann Rion, and Sébastien Villemot, "Dynare: Reference Manual Version 5," Dynare Working Papers 72, CEPREMAP January 2022.
- **Alpanda, Sami and Serdar Kabaca**, "International Spillovers of Large-Scale Asset Purchases," *Journal of the European Economic Association*, 2020, 18 (1), 342–391.
- _ and _ , "Portfolio Rebalancing Channel and the Effects of Large-Scale Stock and Bond Purchases," 2022. unpublished.
- Andrés, Javier, J David López-Salido, and Edward Nelson, "Tobin's Imperfect Asset Substitution in Optimizing General Equilibrium," *Journal of Money, Credit and Banking*, August 2004, 36 (4), 665–690.
- Baumeister, Christiane and Luca Benati, "Unconventional Monetary Policy and the Great Recession: Estimating the Macroeconomic Effects of a Spread Compression at the Zero Lower Bound," *International Journal of Central Banking*, June 2013, 9 (2), 165–212.
- Bernanke, Ben S., Mark Gertler, and Simon Gilchrist, "The Financial Accelerator in a Quantitative Business Cycle Framework," in John B. Taylor and Michael Woodford, eds., *Handbook of Monetary Economics*, Vol. 1C, Amsterdam: North-Holland, 1999, chapter 21, pp. 1341–1393.
- _ , Vincent R. Reinhart, and Brian P. Sack, "Monetary Policy Alternatives at the Zero Bound: An Empirical Assessment," *Brookings Papers on Economic Activity*, 2004, 35 (2), 1–100.
- Carlstrom, Charles T., Timothy S. Fuerst, and Matthias Paustian, "Targeting Long Rates in a Model with Segmented Markets," *American Economic Journal: Macroeconomics*, January 2017, 9 (1), 205–242.
- Carpenter, Seth, Selva Demiralp, Jane Ihrig, and Elizabeth Klee, "Analyzing Federal Reserve asset purchases: From whom does the Fed buy?," *Journal of Banking & Finance*, 2015, 52 (C), 230–244.
- Chen, Han, Vasco Curdia, and Andrea Ferrero, "The Macroeconomic Effects of Large-Scale Asset Purchase Programmes," *Economic Journal*, 2012, 122 (November), F289–F315.
- Christiano, Lawrence J., Martin Eichenbaum, and Charles L. Evans, "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," *Journal of Political Economy*, 2005, 113 (1), 1–45.
- _ , Roberto Motto, and Massimo Rostagno, "Risk Shocks," American Economic Review, 2014, 104 (1), 27–65.

- **D'Amico, Stefania and Thomas B. King**, "Flow and stock effects of large-scale treasury purchases: Evidence on the importance of local supply," *Journal of Financial Economics*, 2013, 108 (2), 425–448.
- Davig, Troy and Eric M Leeper, "Fluctuating Macro Policies and the Fiscal Theory," in Daron Acemoglu, Kenneth Rogoff, and Michael Woodford, eds., NBER Macroeconomics Annual, Vol. 21 The MIT Press 2006, pp. 247–298.
- **Debortoli, Davide, Jordi Galí, and Luca Gambetti**, "On the Empirical (Ir)Relevance of the Zero Lower Bound Constraint," *NBER Macroeconomics Annual*, 2020, 34 (1), 141–170.
- Del Negro, Marco, Marc P. Giannoni, and Christina Patterson, "The Forward Guidance Puzzle," Federal Reserve Bank of New York Staff Reports 574, 2013.
- Eusepi, Stefano and Bruce Preston, "The Maturity Structure of Debt, Monetary Policy and Expectations Stabilization," Working Paper, Federal Reserve Bank of New York, 2011.
- Falagiarda, Matteo, "Evaluating quantitative easing: a DSGE approach," International Journal of Monetary Economics and Finance, 2014, 7 (4), 302–327.
- Foley-Fisher, Nathan, Rodney Ramcharan, and Edison Yu, "The impact of unconventional monetary policy on firm financing constraints: Evidence from the maturity extension program," *Journal of Financial Economics*, 2016, 122 (2), 409–429.
- Gertler, Mark and Peter Karadi, "QE 1 vs. 2 vs. 3. . . : A Framework for Analyzing Large-Scale Asset Purchases as a Monetary Policy Tool," *International Journal of Central Banking*, January 2013, 9 (1), 5–53.
- Goldstein, Itay, Jonathan Witmer, and Jing Yang, "Following the Money: Evidence for the Portfolio Balance Channel of Quantitative Easing," Staff Working Papers 18-33, Bank of Canada 2018.
- Hamilton, James D. and Jing Cynthia Wu, "The Effectiveness of Alternative Monetary Policy Tools in a Zero Lower Bound Environment," *Journal of Money, Credit and Banking*, February 2012, 44, 3–46.
- **Harrison, Richard**, "Asset Purchase Policy at the Effective Lower Bound for Interest Rates," Bank of England, Working Paper No. 444, 2012.
- Hohberger, Stefan, Romanos Priftis, and Lukas Vogel, "The distributional effects of conventional monetary policy and quantitative easing: Evidence from an estimated DSGE model," *Journal of Banking & Finance*, 2020, 113 (C).
- Ikeda, Daisuke, Shangshang Li, Sophocles Mavroeidis, and Francesco Zanetti, "Testing the Effectiveness of Unconventional Monetary Policy in Japan and the United States," IMES Discussion Paper Series 20-E-10, Institute for Monetary and Economic Studies, Bank of Japan July 2020.

- **Joyce, Michael A.S., Zhuoshi Liu, and Ian Tonks**, "Institutional Investors and the QE Portfolio Balance Channel," *Journal of Money, Credit and Banking*, September 2017, 49 (6), 1225–1246.
- Kim, Kyungmin, Thomas Laubach, and Min Wei, "Macroeconomic Effects of Large-Scale Asset Purchases: New Evidence," Finance and Economics Discussion Series 2020-047, Board of Governors of the Federal Reserve System (U.S.) June 2020.
- Krishnamurthy, Arvind and Annette Vissing-Jorgensen, "The Effects of Quantitative Easing on Interest Rates: Channels and Implications for Policy," *Brookings Papers on Economic Activity*, 2011, 42 (2 (Fall)), 215–287.
- _ and _ , "The Aggregate Demand for Treasury Debt," Journal of Political Economy, 2012, 120 (2), 233–267.
- **Laséen, Stefan and Lars E.O. Svensson**, "Anticipated Alternative policy Rate Paths in Policy Simulations," *International Journal of Central Banking*, September 2011, 7 (3), 1–35.
- **Longstaff, Francis A., Sanjay Mithal, and Eric Neis**, "Corporate Yield Spreads: Default Risk or Liquidity? New Evidence from the Credit Default Swap Market," *Journal of Finance*, October 2005, 60 (5), 2213–2253.
- Negro, Marco Del and Frank Schorfheide, "DSGE Model-Based Forecasting," in G. Elliott, C. Granger, and A. Timmermann, eds., *Handbook of Economic Forecasting*, Vol. 2 of *Handbook of Economic Forecasting*, Elsevier, 2013, chapter 0, pp. 57–140.
- _ , Marc P. Giannoni, and Christina Patterson, "The Forward Guidance Puzzle," Journal of Political Economy Macroeconomics, 2023, 1 (1), 43–79.
- **Priftis, Romanos and Lukas Vogel**, "The Portfolio Balance Mechanism and QE in the Euro Area," *Manchester School*, September 2016, 84 (S1), 84–105.
- Rogers, John H., Chiara Scotti, and Jonathan H. Wright, "Evaluating asset-market effects of unconventional monetary policy: a multi-country review," *Economic Policy*, October 2014, 29 (80), 749–799.
- Smets, Frank and Rafael Wouters, "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, June 2007, 97 (3), 586–606.
- Swanson, Eric T. and John C. Williams, "Measuring the Effect of the Zero Lower Bound on Medium- and Longer-Term Interest Rates," *American Economic Review*, October 2014, 104 (10), 3154–3185.
- Vayanos, Dimitri and Jean-Luc Vila, "A Preferred-Habitat Model of the Term Structure of Interest Rates," NBER Working Papers 15487, National Bureau of Economic Research, Inc November 2009.
- Wallace, Neil, "A Modigliani-Miller Theorem for Open-Market Operations," *American Economic Review*, 1981, 71 (3), 267–274.

A Characterization of the Equilibrium

Lowercase variables are real de-trended variables. So if X_t is a nominal variable then $x_t \equiv X_t/(P_t z_t^*)$. Table 4 presents the notation definitions.

A.1 Auxiliary Expressions:

Aux 1: Index term in price updating for firms who cannot re-optimize

$$\tilde{\pi}_t \equiv (\pi_t^{\text{target}})^{\iota} \pi_{t-1}^{1-\iota}.$$

Aux 2: $\tilde{\pi}_t$ ahead 1 period

$$\tilde{\pi}_{t+1} \equiv (\pi_{t+1}^{\text{target}})^{\iota} \pi_t^{1-\iota}.$$

Aux 3: Definition of $K_{p,t}$:

$$K_{p,t} \equiv F_{p,t} \left[\frac{1 - \xi_p \left(\frac{\tilde{\pi}_t}{\pi_t} \right)^{\frac{1}{1 - \lambda_{f,t}}}}{1 - \xi_p} \right]^{1 - \lambda_{f,t}}.$$

Aux 4: $K_{p,t}$ ahead 1 period

$$K_{p,t+1} \equiv F_{p,t+1} \left[\frac{1 - \xi_p \left(\frac{\tilde{\pi}_{t+1}}{\pi_{t+1}} \right)^{\frac{1}{1-\lambda_{f,t+1}}}}{1 - \xi_p} \right]^{1-\lambda_{f,t+1}}.$$

Aux 5: Index term in wage updating for non-reoptimizing unions

$$\tilde{\pi}_{w,t} \equiv \left(\pi_t^{\text{target}}\right)^{\iota_w} \left(\pi_{t-1}\right)^{1-\iota_w}.$$

Aux 6: $\tilde{\pi}_{w,t}$ ahead 1 period

$$\tilde{\pi}_{w,t+1} \equiv \left(\pi_{t+1}^{\text{target}}\right)^{\iota_w} \left(\pi_t\right)^{1-\iota_w}.$$

Aux 7: Wage Inflation

$$\pi_{w,t} \equiv \pi_t \mu_{z,t}^* \frac{\tilde{w}_t}{\tilde{w}_{t-1}}.$$

Aux 8: $\pi_{w,t}$ ahead 1 period

$$\pi_{w,t+1} \equiv \pi_{t+1} \mu_{z,t+1}^* \frac{\tilde{w}_{t+1}}{\tilde{w}_t}.$$

Aux 9: Definition of $K_{w,t}$

$$K_{w,t} \equiv \frac{\tilde{w}_t F_{w,t}}{\psi_L} \left[\frac{1 - \xi_w \left(\frac{\tilde{\pi}_{w,t}(\mu_z^*)^{\iota_{\mu}}(\mu_{z,t}^*)^{1-\iota_{\mu}}}{\pi_{w,t}} \right)^{\frac{1}{1-\lambda_w}}}{1 - \xi_w} \right]^{1-\lambda_w(\sigma_L + 1)}.$$

Aux 10: $K_{w,t}$ ahead 1 period

$$K_{w,t+1} \equiv \frac{\tilde{w}_{t+1} F_{w,t+1}}{\psi_L} \left[\frac{1 - \xi_w \left(\frac{\tilde{\pi}_{w,t+1} (\mu_z^*)^{\iota_\mu} (\mu_{z,t+1}^*)^{1-\iota_\mu}}{\pi_{w,t+1}} \right)^{\frac{1}{1-\lambda_w}}}{1 - \xi_w} \right]^{1 - \lambda_w (\sigma_L + 1)}.$$

A.2 Distributions

$$F_{t}(\bar{\omega}_{t+1}) \equiv CDF\left(\frac{\log(\bar{\omega}_{t+1}) + \frac{1}{2}\sigma_{t}^{2}}{\sigma_{t}}\right),$$

$$G_{t}(\bar{\omega}_{t+1}) \equiv CDF\left(\frac{\log(\bar{\omega}_{t+1}) + \frac{1}{2}\sigma_{t}^{2}}{\sigma_{t}} - \sigma_{t}\right),$$

$$G'_{t}(\bar{\omega}_{t+1}) \equiv PDF\left(\frac{\log(\bar{\omega}_{t+1}) + \frac{1}{2}\sigma_{t}^{2}}{\sigma_{t}} - \sigma_{t}\right)\frac{1}{\sigma_{t}},$$

$$\Gamma_{t}(\bar{\omega}_{t+1}) \equiv \bar{\omega}_{t+1}\left[1 - F_{t}(\bar{\omega}_{t+1})\right] + G_{t}(\bar{\omega}_{t+1}),$$

$$\Gamma'_{t}(\bar{\omega}_{t+1}) = 1 - F_{t}(\bar{\omega}_{t+1}).$$

A.3 Model Equations

Equation 1 (First order condition with respect to consumption):

$$E_t \left\{ \frac{\mu_{z,t}^*}{c_t \mu_{z,t}^* - bc_{t-1}} - \frac{b\beta}{c_{t+1} \mu_{z,t+1}^* - bc_t} - \lambda_{z,t} \right\} = 0.$$
 (A.1)

Equation 2 (First order condition with respect to the short bond):

$$E_{t} \left\{ \nu \left(\frac{b_{t}^{L}}{b_{t}} - \delta^{b} \right) \frac{b_{t}^{L}}{b_{t}^{2}} - \lambda_{z,t} + \beta \frac{\lambda_{z,t+1}}{\pi_{t+1} \mu_{z,t+1}^{*}} R_{t} \right\} = 0.$$
 (A.2)

Equation 3 (First order condition with respect to the long bond):

$$E_t \left\{ -\nu \left(\frac{b_t^L}{b_t} - \delta^b \right) \frac{1}{b_t} - \lambda_{z,t} + \beta \frac{\lambda_{z,t+1}}{\pi_{t+1} \mu_{z,t+1}^*} R_{t+1}^L \right\} = 0.$$
 (A.3)

Equation 4 (First order condition with respect to investment):

$$E_{t} \left\{ \lambda_{z,t} \left(q_{t} - \frac{1}{\mu_{\Upsilon,t}} \right) - \lambda_{z,t} q_{t} \left[S \left(\frac{\mu_{z,t}^{*} \Upsilon i_{t}}{i_{t-1}} \right) + S' \left(\frac{\mu_{z,t}^{*} \Upsilon i_{t}}{i_{t-1}} \right) \frac{\mu_{z,t}^{*} \Upsilon i_{t}}{i_{t-1}} \right] + \beta \frac{\lambda_{z,t+1} q_{t+1}}{\mu_{z,t}^{*} \Upsilon} S' \left(\frac{\mu_{z,t+1}^{*} \Upsilon i_{t+1}}{i_{t}} \right) \left(\frac{\mu_{z,t+1}^{*} \Upsilon i_{t+1}}{i_{t}} \right)^{2} \right\} = 0.$$
(A.4)

Equation 5 (Firm Production Function):

$$y_{z,t} = (p_t^*)^{\frac{\lambda_{f,t}}{\lambda_{f,t}-1}} \left[\epsilon_t \left(\frac{u_t \bar{k}_t}{\mu_{z,t}^* \Upsilon} \right)^{\alpha} \left(h_t(w_t^*)^{\frac{\lambda_w}{\lambda_w-1}} \right)^{1-\alpha} - \phi \right]. \tag{A.5}$$

Equation 6 (Resource Constraint):

$$y_{z,t} = g_t + c_t + \frac{i_t}{\mu_{\Upsilon,t}} + \Theta \frac{1 - \gamma}{\gamma} (n_{t+1} - w^e) + d_t + \frac{a(u_t)\bar{k}_t}{\Upsilon \mu_{z,t}^*},$$
where $d_t \equiv \frac{\mu G_{t-1}(\bar{\omega}_t) R_t^k q_{t-1}\bar{k}_t}{\pi_t \mu_{z,t}^*}.$
(A.6)

Equation 7 (Rental Rate of Capital):

$$r_t^k = \alpha \epsilon_t \left(\frac{\mu_{z,t}^* \Upsilon h_t(w_t^*)^{\frac{\lambda_w}{\lambda_w - 1}}}{u_t \bar{k}_t} \right)^{1 - \alpha} s_t. \tag{A.7}$$

Equation 8 (Marginal Cost):

$$s_t = \frac{1}{\epsilon_t} \left(\frac{r_t^k}{\alpha} \right)^{\alpha} \left(\frac{\tilde{w}_t}{1 - \alpha} \right)^{1 - \alpha}. \tag{A.8}$$

Equation 9 (Optimal utilization of capital):

$$r_t^k = a'(u_t) = r^k \exp(\sigma_a(u_t - 1)),$$
 (A.9)

where $a(u_t) \equiv \frac{r^k}{\sigma_a} \left[\exp(\sigma_a(u_t - 1)) - 1 \right].$

Equation 10 (Law of motion for capital):

$$\bar{k}_{t+1} = \frac{1 - \delta}{\mu_{z,t}^* \Upsilon} \bar{k}_t + \left[1 - S \left(\frac{i_t \mu_{z,t}^* \Upsilon}{i_{t-1}} \right) \right] i_t.$$
 (A.10)

Equation 11 (Rate of return on capital):

$$R_t^k = \frac{u_t r_t^k - a(u_t) + (1 - \delta)q_t}{\Upsilon q_{t-1}} \pi_t.$$
(A.11)

Equation 12 (Entrepreneurs' FoC wrt $\bar{\omega}_{t+1}$):

$$E_{t} \left\{ \left[1 - \Gamma_{t}(\bar{\omega}_{t+1}) \right] \frac{R_{t+1}^{k}}{R_{t+1}^{credit}} + \frac{\Gamma'_{t}(\bar{\omega}_{t+1})}{\Gamma'_{t}(\bar{\omega}_{t+1}) - \mu G'_{t}(\bar{\omega}_{t+1})} \left[\frac{R_{t+1}^{k}}{R_{t+1}^{credit}} \left(\Gamma_{t}(\bar{\omega}_{t+1}) - \mu G_{t}(\bar{\omega}_{t+1}) - 1 \right] \right\} = 0. \tag{A.12}$$

Equation 13 (Evolution of Entrepreneurs' Net Worth):

$$n_{t+1} = \frac{\gamma}{\pi_t \mu_{z,t}^*} \left\{ R_t^k \left(1 - \mu G_{t-1}(\bar{\omega}_t) \right) - R_t^{credit} \right\} \bar{k}_t q_{t-1} + w^e + \gamma \frac{R_t^{credit}}{\pi_t \mu_{z,t}^*} n_t.$$
 (A.13)

Equation 14 (Mutual Funds Zero-Profit Condition):

$$\frac{q_t \bar{k}_{t+1}}{n_{t+1}} \frac{R_{t+1}^k}{R_{t+1}^{credit}} \left[\Gamma_t(\bar{\omega}_{t+1}) - \mu G_t(\bar{\omega}_{t+1}) \right] - \frac{q_t \bar{k}_{t+1}}{n_{t+1}} + 1 = 0. \tag{A.14}$$

Equation 15 (AR(1) for the supply of long term government bonds):

$$\log\left(\frac{b_t^L}{b^L}\right) = \rho_{bL}\log\left(\frac{b_{t-1}^L}{b^L}\right) + u_t^{bL}.$$
(A.15)

Equation 16 (Taylor Rule):

$$\log\left(\frac{R_t}{R}\right) = \rho_m \log\left(\frac{R_{t-1}}{R}\right) + \left(1 - \rho_m\right) \left[\phi_\pi \log\left(\frac{\pi_t}{\pi_t^{target}}\right) + \frac{\phi_y}{4} \left(\log\frac{y_{z,t}}{y_z} - \log\frac{\mu_z^*}{\mu_{z,t}^*}\right)\right] + \frac{1}{400} \epsilon_t^m.$$
(A.16)

Equation 17 (Shock equation for σ_t):

$$\log\left(\frac{\sigma_t}{\sigma}\right) = \rho_{\sigma}\left(\frac{\sigma_{t-1}}{\sigma}\right) + \epsilon_{\sigma,t}.$$
(A.17)

Equation 18 (Φ_t = its value in steady state):

$$\phi = steady_state(\Phi). \tag{A.18}$$

Equations Related to Price Setting:

Equation 19 (Law of motion for p_t^*):

$$p_t^* = \left[(1 - \xi_p) \left(\frac{K_{p,t}}{F_{p,t}} \right)^{\frac{\lambda_{f,t}}{1 - \lambda_{f,t}}} + \xi_p \left(\frac{\tilde{\pi}_t}{\pi_t} p_{t-1}^* \right)^{\frac{\lambda_{f,t}}{1 - \lambda_{f,t}}} \right]^{\frac{1 - \lambda_{f,t}}{\lambda_{f,t}}}.$$
 (A.19)

Equation 20 (Law of motion for $F_{p,t}$, relates to Calvo Frictions):

$$F_{p,t} = E_t \left\{ \lambda_{z,t} y_{z,t} + \left(\frac{\tilde{\pi}_{t+1}}{\pi_{t+1}} \right)^{\frac{1}{1-\lambda_{f,t+1}}} \beta \xi_p F_{p,t+1} \right\}.$$
 (A.20)

Equation 21 (Law of motion for $K_{p,t}$):

$$K_{p,t} = E_t \left\{ \lambda_{z,t} \lambda_{f,t} y_{z,t} s_t + \beta \xi_p \left(\frac{\tilde{\pi}_{t+1}}{\pi_{t+1}} \right)^{\frac{\lambda_{f,t}}{1-\lambda_{f,t}}} K_{p,t+1} \right\}. \tag{A.21}$$

Equation 22 (Law of motion for $F_{w,t}$, characterizes optimal wage setting):

$$F_{w,t} = E_t \left\{ \lambda_{z,t}(w_t^*)^{\frac{\lambda_w}{\lambda_w - 1}} \frac{h_t}{\lambda_w} + \beta \xi_w(\mu_z^*)^{\frac{1 - \iota_\mu}{1 - \lambda_w}} (\mu_{z,t+1}^*)^{\frac{\iota_\mu}{1 - \lambda_w} - 1} \left(\frac{1}{\pi_{w,t+1}} \right)^{\frac{\lambda_w}{1 - \lambda_w}} \frac{\tilde{\pi}_{w,t+1}^{\frac{1}{1 - \lambda_w}}}{\pi_{t+1}} F_{w,t+1} \right\}. \tag{A.22}$$

Equation 23 (Law of motion for $K_{w,t}$):

$$K_{w,t} = E_t \left\{ \left[(w_t^*)^{\frac{\lambda_w}{\lambda_w - 1}} h_t \right]^{1 + \sigma_L} + \beta \xi_w K_{w,t+1} \left(\frac{\tilde{\pi}_{w,t+1} (\mu_{z,t+1}^*)^{\iota_\mu} (\mu_z^*)^{1 - \iota_\mu}}{\pi_{w,t+1}} \right)^{\frac{\lambda_w}{1 - \lambda_w} (1 + \sigma_L)} \right\}. \quad (A.23)$$

Equation 24 (Law of motion for w_t^*):

$$w_{t}^{*} = \left[(1 - \xi_{w}) \left(\frac{1 - \xi_{w} \left(\frac{\tilde{\pi}_{w,t}}{\pi_{w,t}} (\mu_{z}^{*})^{1 - \iota_{\mu}} (\mu_{z,t}^{*})^{\iota_{\mu}} \right)^{\frac{1}{1 - \lambda_{w}}}}{1 - \xi_{w}} \right)^{\lambda_{w}} + \xi_{w} \left(\frac{\tilde{\pi}_{w,t} (\mu_{z,t}^{*})^{\iota_{\mu}} (\mu_{z}^{*})^{1 - \iota_{\mu}}}{\pi_{w,t}} w_{t-1}^{*} \right)^{\frac{\lambda_{w}}{1 - \lambda_{w}}} \right]^{\frac{1 - \lambda_{w}}{\lambda_{w}}}.$$
(A.24)

Equation 25 (Entrepreneurs' balance sheet):

$$q_t \bar{k}_{t+1} = B_t^{credit} + n_{t+1}.$$
 (A.25)

Equation 26 (Definition of leverage, L_t):

$$L_t = \frac{n_{t+1} + B_t^{credit}}{n_{t+1}}. (A.26)$$

Equation 27 (Real government bonds):

$$b_t^L = v_t^L B_t^c. (A.27)$$

Equation 28 (Long Rate):

$$R_{t+1}^{L} = \frac{1 + V_{t+1}^{L}}{V_{t}^{L}}. (A.28)$$

Equation 29 (Entrepreneurial debt rate):

$$Z_{t+1} = R_{t+1}^k \bar{\omega}_{t+1} \frac{L_t}{L_t - 1}.$$
 (A.29)

Fiscal Policy Block:

Equation 30 (Government Spending Rule):

$$g_t = g_{yz}steady_state(y_z). \tag{A.30}$$

Equation 31 (Government Budget Constraint):

$$b_t + b_t^L = \frac{R_{t-1}b_{t-1}}{\pi_t \mu_{z,t}^*} + \frac{R_t^L b_{t-1}^L}{\pi_t \mu_{z,t}^*} + g_t - t_t.$$
(A.31)

Equation 32 (Fiscal Rule):

$$t_t - g_t = \kappa \left(\frac{b_{t-1} + b_{t-1}^L}{b + b^L}\right)^{\phi_T} \epsilon_t^T. \tag{A.32}$$

Equation 33 (Investor Arbitrage Condition):

$$\Lambda_{zt,t+1} \left[R_{t+1}^{credit} - R_{t+1}^{L} \right] = 0. \tag{A.33}$$

Equation 34 (Shock equation for ϵ_t):

$$\log\left(\frac{\epsilon_t}{\epsilon}\right) = \rho_{\epsilon}\left(\frac{\epsilon_{t-1}}{\epsilon}\right) + \epsilon_{\epsilon,t}. \tag{A.34}$$

Equation 35 (Shock equation for $\mu_{z,t}^*$):

$$\log\left(\frac{\mu_{z,t}^*}{\mu_z^*}\right) = \rho_{\mu_z^*} \left(\frac{\mu_{z,t-1}^*}{\mu_z^*}\right) + \epsilon_{\mu_z^*,t}. \tag{A.35}$$

B News Shocks

The calibration method of the anticipated news shocks is based on Del Negro, Giannoni and Patterson (2013) and Laséen and Svensson (2011). This appendix section specifies where news shocks appear in the model, the news shock structure, and the process of calibrating news shocks to match a given path for the short rate.

B.1 Where is the News?

News in this model appears as shocks to the Taylor Rule:

$$\log\left(\frac{R_t}{R}\right) = \rho_m \log\left(\frac{R_{t-1}}{R}\right) + (1 - \rho_m) \left[\phi_\pi \log\left(\frac{\pi_t}{\pi_t^{target}}\right) + \frac{\phi_y}{4} \left(\log\frac{y_{z,t}}{y_s} - \log\frac{\mu_z^*}{\mu_{z,t}^*}\right)\right] + \frac{1}{400} u_t^m, \tag{B.1}$$

and the long term government bond supply rule:

$$\log\left(\frac{b_t^L}{b^L}\right) = \rho_{BL}\log\left(\frac{b_{t-1}^L}{b^L}\right) + u_t^{BL}.$$
(B.2)

In the model simulations $\rho_{BL} = 0$, so that the entire path of bond purchases, holding, and unwinding in the quantitative easing program is set via surprise and news shocks.

B.2 News Shock Structure

A generic news shock has the following representation:

$$u_t = \epsilon_t + \xi_{1,t-1} + \xi_{2,t-2} + \dots + \xi_{p,t-p}, \tag{B.3}$$

where ϵ_t is the unanticipated shock and $\xi_{p,t-p}$ for $p \geq 1$ are the anticipated news shocks. The shock $\xi_{p,t-p}$ is observed by agents in period t-p, but does not affect the relevant sum of shocks until period t.

B.3 Forward Guidance Implementation

Dynare has the following state-space representation of the model:

- $s_t = m \times 1$ vector of states. (m = M_.npred + M_.nboth).
- $x_t = n \times 1$ vector of controls. (n = M_.nstatic + M_.nfwrd).
- $\epsilon_t = w \times 1 \text{ vector of shocks. } (w = M_.exo_nbr).$
- $\Phi = (n \times m)$, the policy function.

State-space representation:

$$s_t = \underset{mxm}{A} s_{t-1} + \underset{mxw}{B} \epsilon_t, \tag{B.4}$$

$$x_t = \Phi s_t. \tag{B.5}$$

Substitute (B.4) into (B.5):

$$s_t = As_{t-1} + B\epsilon_t,$$

$$x_t = \Phi As_{t-1} + \Phi B\epsilon_t.$$

Define $C_{nxm} \equiv \Phi A$ and $D_{nxw} \equiv \Phi B$. And rewrite the state-space system:

$$s_t = As_{t-1} + B\epsilon_t,$$

$$x_t = Cs_{t-1} + D\epsilon_t.$$

Stack the system and collapse: $Y_t = \begin{bmatrix} s_t \\ x_t \end{bmatrix}, \qquad \Psi = \begin{bmatrix} A \\ C \end{bmatrix}, \qquad \Omega = \begin{bmatrix} B \\ D \end{bmatrix}.$

$$Y_t = \Psi s_{t-1} + \Omega \epsilon_t. \tag{B.6}$$

- $\Psi = oo dr.ghx = (m+n) \times m$, matrix of coefficients that appears in the Dynare generated transition rule. (# of endogenous variables = m+n, by # of state variables = m).
- $\Omega = oo_{\cdot}dr.ghu = (m+n) \times w$, matrix of coefficients that appears in the Dynare generated transition rule. It has dimension (# of endogenous variables by # of shocks).

Let Z be a matrix $(m \times (m+n))$ that selects the state variables from the Y_t matrix, so that $s_t = ZY_t$. And define $M \equiv \Psi Z$. So we can rewrite B.6 as:

$$Y_t = MY_{t-1} + \Omega \epsilon_t.$$

Split the shock vector:

$$\epsilon_t = \epsilon_t^1 + \epsilon_t^2, \tag{B.7}$$

where ϵ_t^1 is a $w \times 1$ vector and where all shocks, except the monetary policy forward guidance

shocks are replaced with zeros. And ϵ_t^2 is a $w \times 1$ vector where all but the monetary policy forward guidance shocks are replaced with zeros. So can further rewrite B.6 as:

$$Y_t = MY_{t-1} + \Omega \left[\epsilon_t^1 + \epsilon_t^2 \right]. \tag{B.8}$$

Both the forward guidance shocks and the QE shock, that hit at t = 1, so $\epsilon_t = 0 \ \forall t > 1$. Note that ϵ_1^1 is known (this vector contain the shocks to the long bond supply rule that introduce QE). Further note that ϵ_1^2 is the vector of shocks to be calibrated to produce the target path for the policy rate.

Using equation B.8 note that:

$$Y_1 = MY_0 + \Omega \left[\epsilon_1^1 + \epsilon_1^2 \right],$$

where Y_0 is the steady state (also known). Iterating forward:

$$Y_2 = MY_1 = M^2Y_0 + M\Omega\Big[\epsilon_1^1 + \epsilon_1^2\Big].$$

Generally:

$$Y_t = M^t Y_0 + M^{t-1} \Omega \left[\epsilon_1^1 + \epsilon_1^2 \right].$$

Let \mathbf{R}^{FG} be the $t_{FG} \times 1$ target vector for the path of the policy rate, where t_{FG} is the number of periods that the policy rate is constrained (in the LSAPII simulation $t_{FG} = 4$). Let \tilde{Z} be a $1 \times (n+m)$ row vector that selects the row of Y_t corresponding to the policy rate (in

Dynare this is the DR ordering of R_t).

$$R_{1} = \tilde{Z}MY_{0} + \tilde{Z}\Omega\epsilon_{1}^{1} + \tilde{Z}\Omega\epsilon_{1}^{2},$$

$$R_{2} = \tilde{Z}M^{2}Y_{0} + \tilde{Z}M\Omega\epsilon_{1}^{1} + \tilde{Z}M\Omega\epsilon_{1}^{2},$$

$$R_{3} = \tilde{Z}M^{3}Y_{0} + \tilde{Z}M^{2}\Omega\epsilon_{1}^{1} + \tilde{Z}M^{2}\epsilon_{1}^{2},$$

$$R_{4} = \tilde{Z}M^{4}Y_{0} + \tilde{Z}M^{3}\Omega\epsilon_{1}^{1} + \tilde{Z}M^{3}\Omega\epsilon_{1}^{2}.$$

Stack:

$$\begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \end{bmatrix} = \underbrace{\begin{bmatrix} \tilde{Z}MY_0 + \tilde{Z}\Omega\epsilon_1^1 \\ \tilde{Z}M^2Y_0 + \tilde{Z}M\Omega\epsilon_1^1 \\ \tilde{Z}M^3Y_0 + \tilde{Z}M^2\Omega\epsilon_1^1 \\ \tilde{Z}M^4Y_0 + \tilde{Z}M^3\Omega\epsilon_1^1 \end{bmatrix}}_{\mathbf{K}} + \underbrace{\begin{bmatrix} \tilde{Z}\Omega \\ \tilde{Z}M \\ \tilde{Z}M^2 \\ \tilde{Z}M^3\Omega \end{bmatrix}}_{\mathbf{J}} \epsilon_1^2.$$
(B.9)

Set the vector of policy rates equal to the target path \mathbf{R}_{FG} :

$$\begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \end{bmatrix} = \begin{bmatrix} R_1^{FG} \\ R_2^{FG} \\ R_3^{FG} \\ R_4^{FG} \end{bmatrix} \equiv \mathbf{R}^{FG}.$$
(B.10)

$$\mathbf{R}^{FG} = \mathbf{K} + \mathbf{J}\epsilon_1^2. \tag{B.11}$$

and solve for ϵ_1^2 :

$$\epsilon_1^2 = \mathbf{J}^{-1} \bigg(\mathbf{R}^{FG} - \mathbf{K} \bigg). \tag{B.12}$$

C Data Appendix

I use US quarterly data from 1985Q1 to 2007Q3 (the period before the NBER recession start date). The following series come from the Federal Reserve Bank of St. Louis' Federal Reserve

Economic Data (FRED): Gross Domestic Product (GDP), and Effective Federal Funds Rate (FEDFUNDS). Data on the nominal value of privately-held marketable interest-bearing US public debt come from the Haver/DLX USECON database (see 5 for data codes). The data are broken down by time until maturity. The long term government bonds are defined as bonds with over 1 year until maturity, and the short term government bonds are defined as bonds with less than 1 year left until maturity.

The size of a \$100 billion purchase of long term bonds is x% of the steady state quantity of long term bonds, where x is calibrated as follows:

$$x = \frac{100}{bL_{yz} \times \frac{2007q3 \text{ GDP}}{4}},$$
 (C.1)

where bL_yz is the steady state ratio of long term bonds to (quarterly) output, and 2007Q3 GDP is in annual terms. \$100 billion purchase of long term bonds is equivalent to 3.55% of steady state de-trended long bonds (b^L). So the \$600 billion purchase of long term bonds in LSAPII is equivalent to 21.3% of steady state de-trended long bonds.

C.1 Calibrating the 1% of GDP QE Shock

To standardize the QE shocks I do the following. First, the long-run ratio of long term government bonds to quarterly GDP implies that long term government bonds are 19.25% of annual GDP. This means that 1% of GDP is equivalent to 5.19% of steady state de-trended long term government bonds. Given the preceding calculations (\$100 bn $\approx 3.55\%$ of steady state de-trended long term government bonds) this means $5.19\% \approx 146 bn. The long term US Treasuries purchases in LSAPI are approximately a 2% of GDP QE shock, and LSAPII is approximately a 4% of GDP QE shock.

D Derivation & Calibration of ν

D.1 Derivation of ν

The $\nu \equiv \tilde{\nu} \delta^b (1 + \delta^b)/(\lambda_z b)$ is the elasticity of the term premium with respect to the relative supply of long to short term government debt. The ν parameter governs the responsiveness of the term premium to changes in the relative supply of long versus short term bonds. The following shows the log-linearization of the key equations (Model equations 2 & 3) around the steady state used to calibrate the partial equilibrium response.

First order condition with respect to the short bond (see A.2):

$$f^{a} \equiv E_{t} \left\{ \tilde{\nu} \left(\frac{b_{t}^{L}}{b_{t}} - \delta^{b} \right) \frac{b_{t}^{L}}{b_{t}^{2}} - \lambda_{z,t} + \beta \frac{\lambda_{z,t+1}}{\pi_{t+1} \mu_{z,t+1}^{*}} R_{t} \right\} = 0.$$

First order condition with respect to the long bond (see A.3):

$$f^{b} \equiv E_{t} \left\{ -\tilde{\nu} \left(\frac{b_{t}^{L}}{b_{t}} - \delta^{b} \right) \frac{1}{b_{t}} - \lambda_{z,t} + \beta \frac{\lambda_{z,t+1}}{\pi_{t+1} \mu_{z,t+1}^{*}} R_{t+1}^{L} \right\} = 0.$$

Log-linearizing around the steady state:

$$f^{a} \approx \lambda_{z} \left[\hat{\lambda}_{z,t+1} - \hat{\lambda}_{z,t} + \hat{R}_{t} - \hat{\pi}_{t+1} - \hat{\mu}_{z,t+1}^{*} \right] + \frac{\tilde{\nu}(\delta^{b})^{2}}{b} (\hat{b}_{t}^{L} - \hat{b}_{t}), \tag{D.1}$$

$$f^{b} \approx \lambda_{z} \left[\hat{\lambda}_{z,t+1} - \hat{\lambda}_{z,t} + \hat{R}_{t+1}^{L} - \hat{\pi}_{t+1} - \hat{\mu}_{z,t+1}^{*} \right] - \frac{\tilde{\nu}\delta^{b}}{b} (\hat{b}_{t}^{L} - \hat{b}_{t}). \tag{D.2}$$

This implies:

$$\hat{R}_{t+1}^{L} - \hat{R}_{t} = \frac{1}{\lambda_{z}} \frac{\tilde{\nu} \delta^{b}}{b} (1 + \delta^{b}) [\hat{b}_{t}^{L} - \hat{b}_{t}] = \nu [\hat{b}_{t}^{L} - \hat{b}_{t}]. \tag{D.3}$$

D.2 Calibration of ν

The above derivation results in a log-lineared relationship between the term-premium and the relative quantity of long-to-short term bonds held by households:

$$\hat{R}_{t+1}^{L} - \hat{R}_{t} = \nu \left[\hat{b}_{t}^{L} - \hat{b}_{t} \right]. \tag{D.4}$$

Where R_t is the risk-free gross return at t+1 on a short term government bond sold for a unit price at t. And R_{t+1}^L is the return between t and t+1 on the long term government bond (modeled as a perpetuity, see section 2). Equation D.4 makes it clear that ν is the elasticity of the term premium to changes in the relative supply¹⁶ of long-to-short term government bonds (this is directly comparable to the ν term in Harrison, 2012). ν is calibrated to match a target change in the term premium $(\hat{R}_{t+1}^L - \hat{R}_t)$ following a given % change in the relative holdings of long-to-short term government bonds $(\hat{b}_t^L - \hat{b}_t)$. Rearranging equation D.4, ν is calibrated as follows:

$$\nu = \frac{\text{target basis point change in the term premium}/(400 \times 100)}{\text{target \% change in the relative holdings of long-to-short term bonds}/100}$$
 (D.5)

As indicated in appendix C.1 \$100 billion of long term bonds is equivalent to 3.55% of steady state de-trended long bonds (b^L) . In this paper short term bonds are defined to include central bank reserves. So a QE purchase shock that reduces the supply of long term bonds by 1% of steady state will increase the supply of short term bonds¹⁷ (b) by δ_b %. So the total % change in $\hat{b}_t^L - \hat{b}_t$ of a 1% QE purchase shock is $= (1 + \delta_b)$ %.

As stated in section 4.1, the calibration range for the drop in the term premium is 3-10 basis points per \$100 billion USD in long term government bond purchases (a 3.55% QE shock, or equivalently $(1+\delta_b) \times 3.55\% \approx 10.15\%$ shock to the relative supply of long-to-short government bonds). Using equation D.5 this implies a range of ν between 0.00074-0.0025.

¹⁶Available to the public.

¹⁷In the model this is driven by the government's fiscal rule (eq 35).

Note that the definition of short term bonds includes central bank reserves here, unlike Harrison (2012). This leads to a slightly different calibration strategy for ν , given the QE purchase shock also induces an increase in short term bonds. Whereas in Harrison (2012) real money balances enter the household's utility funciton separately. So the level of ν here is not directly comparable to the level of ν in Harrison (2012). For reference Harrison (2012) discusses the empirical evidence in Bernanke, Reinhart and Sack (2004), who find that a 10% reduction in long term government bonds decreases the term premium by 100 basis points, here that corresponds to $\nu = 0.0088$, whereas in Harrison (2012) that corresponds to $\nu = 0.25$. This level for ν (= 0.0088) is higher than the calibration range here, if I were to use this higher target it would amplify the impact of QE in the model.

E Additional Results

E.1 Narrow Portfolio Balance Channel Without CSV Friction

The "No CSV & Short Maturity Investor" model is a nested version of the baseline model. The state verification cost is set to zero ($\mu = 0$), meaning that there is no external finance premium for entrepreneurs. This removes the accelerator effect from variations in entrepreneurial net worth. Additionally the assumption that investors have a preferred habitat preference for long term assets is dropped. This means investors arbitrage between diversified entrepreneurial debt and short term government bonds¹⁸. This shuts off the Default Risk Channel, the Duration Risk Channel, and restricts the Safety Channel.

Output is boosted in the baseline model of this paper relative to the No CSV & Short Maturity Investor model by 0.44% to 1.45%. Inflation is boosted between 23 to 77 annualized basis points. Investment growth is boosted between 1.3- 4.3 percentage points. In the No CSV & Short Maturity Investor model the peak growth of output is between 0.07% - 0.23%, and inflation grows between 5 and 18 annualized basis points. These results are in the range

¹⁸The two changes imply that the entrepreneurs' first order condition with respect to the default threshold becomes $E\left[R_{t+1}^k - R_t\right] = 0$, making this model comparable to a model in which households directly invest in capital - eg Chen et al. (2012)

of the small quantitative impact of LSAPII found in Chen et al. (2012).

E.2 Zero Interest Rate Policy: Forward Guidance vs Implimented as a Surprise

In the baseline LSAPII simulation the federal funds rate is constrained at the zero lower bound (ZLB) using news shocks¹⁹. Here (figures 12 & 13) I present the effect of implimenting the zero interest policy with forward guidance (as in the baseline, section 4.1) vs surprise (not anticipated) shocks to the taylor rule (eq 36) that keep the federal funds rate at the zero lower bound for 4 quarters.

Output as a percentage devation from steady state is between 0.09 - 0.3 % points more under forward guidance vs the surprise constraint of the federal funds rate at the ZLB. Inflation is boosted between 12 and 38 annual basis points more by LSAPII with forward guidance vs LSAPII with a surprise constraint of the federal funds rate.

In figures 14 & 15 LSAPII is simulated with a commitment to the ZLB of 8 quarters. Output as a percentage devation from steady state is between 1.3 - 4 % points more under forward guidance vs the surprise constraint of the federal funds rate at the ZLB. Inflation is boosted between 91 and 286 annual basis points more by LSAPII with forward guidance vs LSAPII with a surprise constraint of the federal funds rate. These extended zero interest rate policy results may suffer from the forward guidance puzzle discussed in Del Negro et al. (2023).

¹⁹Otherwise it would rise due to the inflationary and stimulative effects of LSAPII

E.3 Convenience Yield

This section tests the robustness of the quantitative role of QE to an attenuated pass-through from long term government bonds to corporate bond yields. Krishnamurthy and Vissing-Jorgensen (2012) find that US Treasuries have attributes such that the spread between US Treasuries and AAA rated corporate debt depends on the supply of US Treasuries. In particular they find that for a 1% increase in long term debt-to-GDP the AAA to 10 Year US Treasury spread increases by 75 basis points. I capture that by incorporating a "convenience yield" preference (ζ_t^p) in the investors' linear utility function (E.6). Where cy is calibrated to match the empirical evidence in Krishnamurthy and Vissing-Jorgensen (2012).

$$\max_{B_t^{L,i}, B_t^{credit,i}} E_t \left\{ \Lambda_{t,t+1} \Big[(R_{t+1}^L + \zeta_t^p) B^{L,t} + R_{t+1}^{credit} B_t^{credit} \Big] \right\},$$
 (E.6)

subject to their balance sheet identity:

$$\tau_t = B_t^{L,i} + B_t^{credit,i},\tag{E.7}$$

where:

$$\zeta_t^p \equiv -\underbrace{cy}_{>0} \left[\log \frac{B_t^L}{Y_t} - \log \frac{B^L}{Y} \right].$$
 (E.8)

The investors' optimality condition (E.9) shows that ζ_t^p is the spread between diversified corporate debt (which can be thought of as the AAA rate) and the long term government bond rate.

$$\Lambda_{t,t+1} \left[R_{t+1}^{credit} - R_{t+1}^L - \zeta_t^p \right] = 0.$$
 (E.9)

The headline result (figures 16 & 17) here is that LSAPII boosts output between 0.15-1.3% (cf 0.51-1.69% in the baseline model) and boosts inflation between 10 - 74 basis points (cf 28-94 basis points in the baseline model).

Under the convenience yield the response of the stock market to QE is quantitatively lower, more in line with the results in Rogers et al. (2014). Furthermore, because the convenience yield extension endogenizes the spread between the diversified composite of corporate bonds (think of this as high grade corporate bonds) and the long term yield on government bonds, this spread goes up in response to QE purchases of long term bonds. This means that the model is closer to matching the empirical evidence in Rogers et al. (2014): that corporate bond yields fall in response to QE, however corporate bond spreads rise, because yields on long term US treasuries fall by more.

List of Figures

1	Simulated Path of Long Term Government Debt Held by the Public	47
2	The Impact of LSAPII (a)	47
3	The Impact of LSAPII (b)	48
4	Quantitative Easing vs a FFR Cut (a)	48
5	Quantitative Easing vs a FFR Cut (b)	49
6	QE With and Without Forward Guidance (a)	50
7	QE With and Without Forward Guidance (b)	51
8	The Costly State Verification Friction Amplifies the Portfolio Balance Channel	52
9	Impact of Investor Preferences (a)	53
10	Impact of Investor Preferences (b)	54
11	Baseline vs Narrow PBC Without CSV Friction	55
12	Forward Guidance vs Surprise FFR Constraint - 4 Quarters (a)	56
13	Forward Guidance vs Surprise FFR Constraint - 4 Quarters (b)	56
14	Forward Guidance vs Surprise FFR Constraint - 8 Quarters (a)	57
15	Forward Guidance vs Surprise FFR Constraint - 8 Quarters (b)	57
16	Convenience Yield (a)	58
17	Convenience Yield (b)	59

Figure 1: Simulated Path of Long Term Government Debt Held by the Public

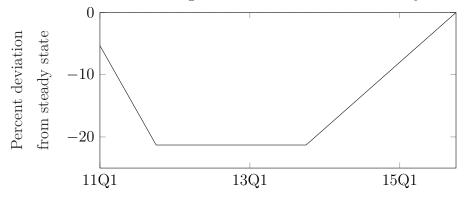
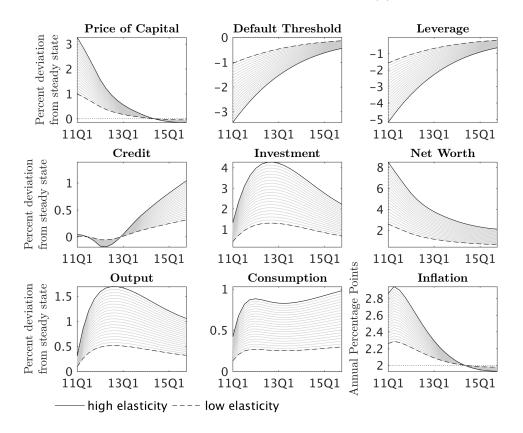


Figure 2: The Impact of LSAPII (a)



47

Figure 3: The Impact of LSAPII (b)

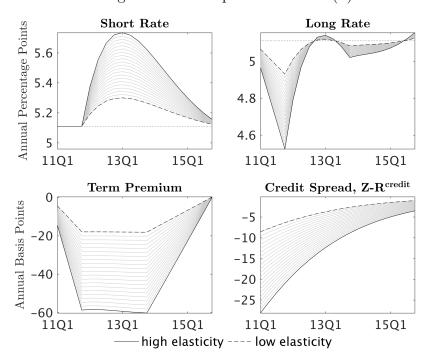
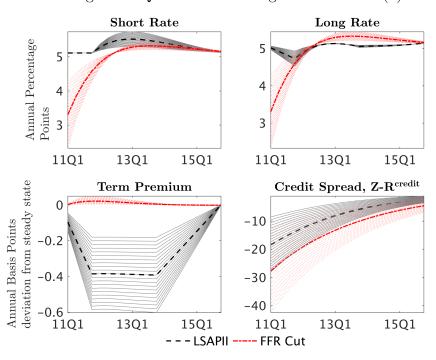


Figure 4: Quantitative Easing vs a FFR Cut (a)



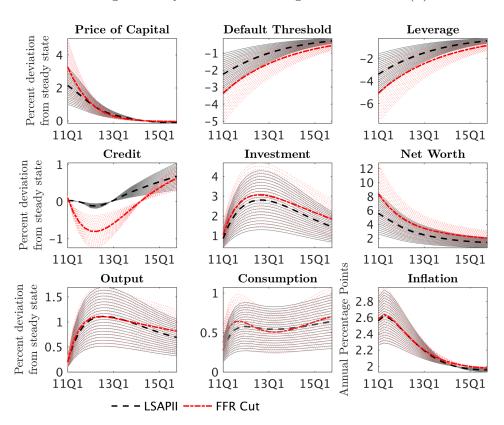
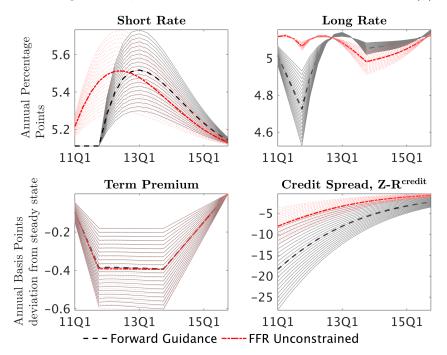


Figure 5: Quantitative Easing vs a FFR Cut (b)

Figure 6: QE With and Without Forward Guidance (a)



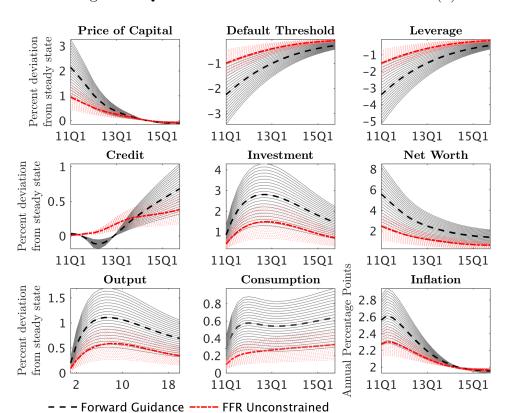
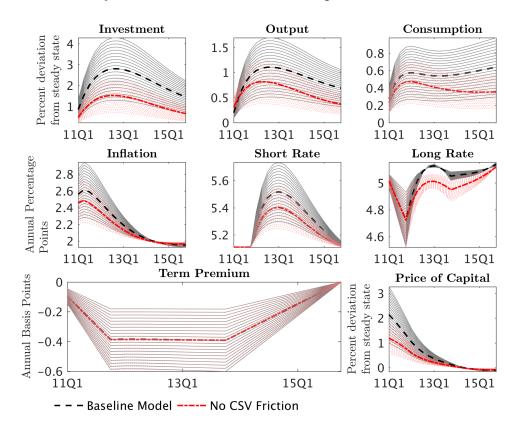


Figure 7: QE With and Without Forward Guidance (b)

Figure 8: The Costly State Verification Friction Amplifies the Portfolio Balance Channel



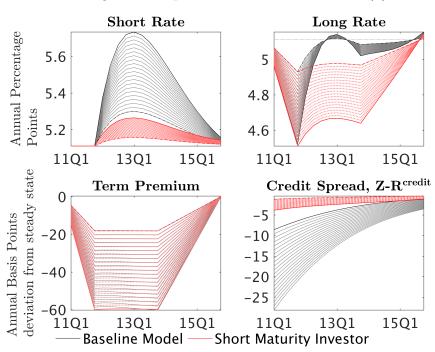


Figure 9: Impact of Investor Preferences (a)

Note: The credit spread in the short model is over the federal funds rate (Z - R) and the credit spread in the long model is over the long-term government bond rate $(Z - R^L)$. The solid lines correspond to the models simulated at the high end of the range for the elasticity of the term premium (ν) . The dashed lines correspond to the models simulated at the low end of the range for the elasticity of the term premium.

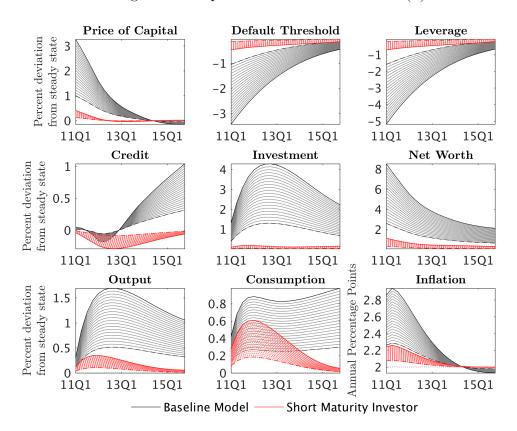


Figure 10: Impact of Investor Preferences (b)

Figure 11: Baseline vs Narrow PBC Without CSV Friction

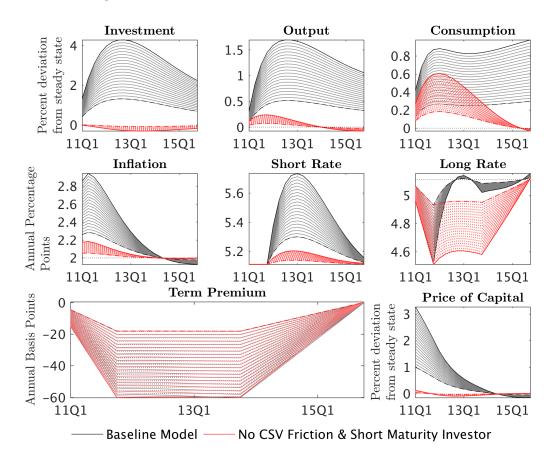


Figure 12: Forward Guidance vs Surprise FFR Constraint - 4 Quarters (a)

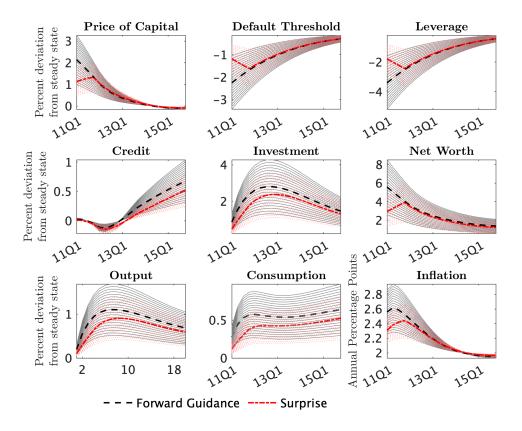


Figure 13: Forward Guidance vs Surprise FFR Constraint - 4 Quarters (b)

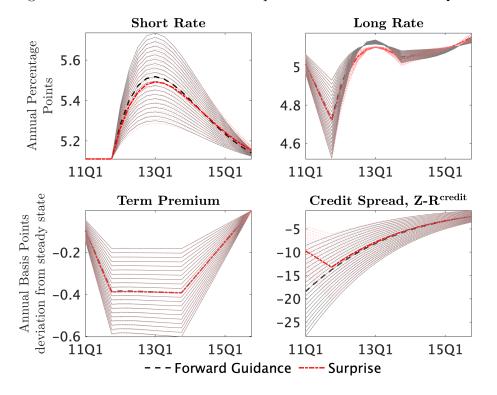


Figure 14: Forward Guidance vs Surprise FFR Constraint - 8 Quarters (a)

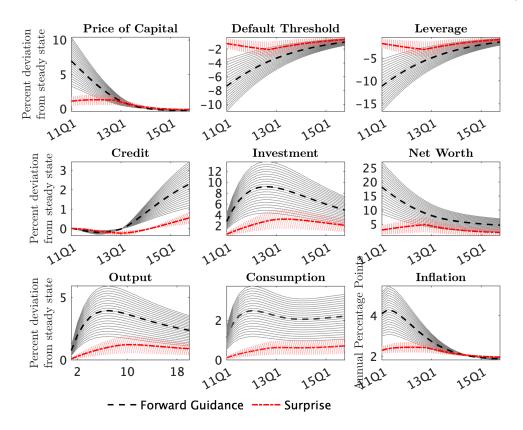
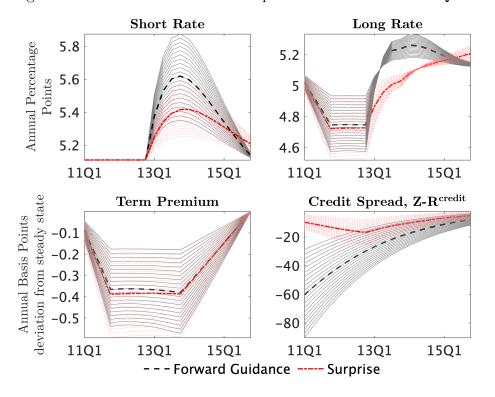


Figure 15: Forward Guidance vs Surprise FFR Constraint - 8 Quarters (b)



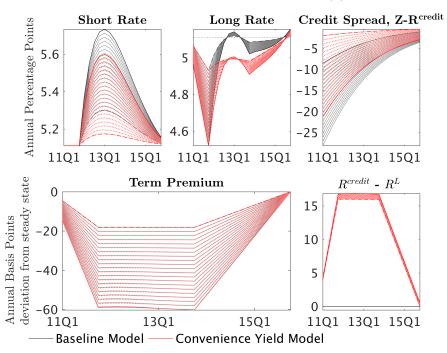


Figure 16: Convenience Yield (a)

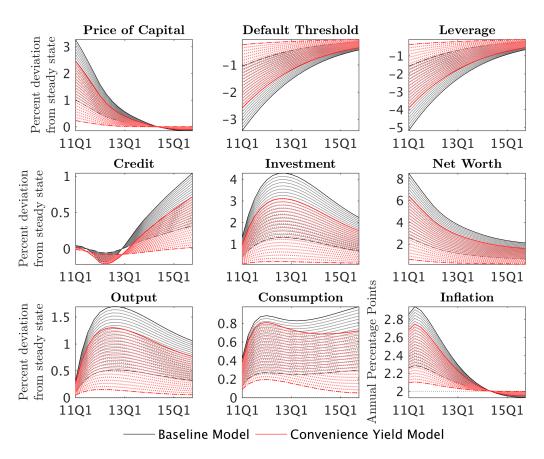


Figure 17: Convenience Yield (b)

List of Tables

1	Steady State Targets	61
2	Calibrated Parameters	62
3	Shock Autocorrelations	62
4	Notation Key	63
5	Haver/DLX USECON Data Codes	63
6	Parameters Corresponding to Targets	63

Table 1: Steady State Targets

Target	Value
Nominal Federal Funds Rate, annualized (R)	5.11
Ratio of long term government bonds to annual output, $B^L/(4 \times Y)$	19.3%
Ratio of long to short bond holdings, B^L/B	1.86
Ratio of government spending to quarterly output, G/Y	20%
Hours worked (h)	1
Inflation, APR (π)	2%

Table 2: Calibrated Parameters

Parameter	Description	Calibration
α	capital's share of output	0.4
b	habit parameter	0.74
Θ	fraction of assets consumed by exiting entrepreneurs	0.005
δ	depreciation rate of capital	0.025
ϵ	steady state value of the technology shock	1
$F(\bar{\omega})$	steady state probability of default	0.0056
γ	fraction of entrepreneurs who survive	0.985
ι	price indexing weight on inflation target	0.9
ι_{μ}	wage indexing weight on persistent technology growth	0.94
ι_w	wage indexing weight on inflation target	0.49
λ_f	markup in the product market	1.2
λ_w	markup in the labor market	1.05
μ	monitoring cost	0.21
μ_Υ	steady state value of $\mu_{\Upsilon,t}$	1
μ_z^*	mean growth rate of the unit root technology shock	1.0041
ϕ_π	parameter on inflation in the Taylor Rule	2.40
ϕ_y	parameter on output in the Taylor Rule	0.36
ϕ_T	fiscal rule feedback parameter (Chen et al., 2012 posterior mean)	1.3147
$ ho_m$	weighting of lagged short rate in Taylor Rule	0.85
S''	parameter in the investment adjustment cost function	10.78
σ_a	curvature of utilization cost	2.54
σ_L	Frisch elasticity of labor supply	1
Υ	quarterly rate of investment-specific technological change	1.0042
w^e	lump sum transfer from household to the entrepreneur	0.005
ξ_p	Calvo price stickiness	0.74
ξ_w	Calvo wage stickiness	0.81

Table 3: Shock Autocorrelations

Parameter	Description	Calibration
$\overline{ ho_{bL}}$	long term bond supply	0
$ ho_\epsilon$	transitory technology	0.81
$ ho_{\mu_z^*}$	persistent technology growth	0.15
$ ho_{\sigma}$	risk shock	0.97

Table 4: Notation Key

$q_t \equiv \Upsilon^t rac{Q_{ar{K},t}}{P_t}$	$y_{z,t} \equiv rac{Y_t}{z_t^*}$	$i_t \equiv rac{I_t}{z_t^* \Upsilon^t}$
$\tilde{w}_t \equiv \frac{W_t}{z_t^* P_t}$	$\bar{k}_t \equiv rac{\bar{K}_t}{z_{t-1}^* \Upsilon^{t-1}}$	$\mu_{z,t}^* \equiv \frac{z_t^*}{z_{t-1}^*}$
$c_t \equiv \frac{C_t}{z_t^*}$	$b_t \equiv \frac{B_t}{z_t^* P_t}$	$b_t^L \equiv rac{B_t^L}{z_t^* P_t}$
$g_t \equiv \frac{G_t}{z_t^*}$	$t_t \equiv rac{T_t}{z_t^* P_t}$	$n_{t+1} \equiv \frac{N_{t+1}}{z_t^* P_t}$
$b_t^{credit} \equiv rac{B_t^{credit}}{z_t^* P_t}$	$\lambda_{z,t} \equiv \lambda_t P_t z_t^*$	$v_t^L \equiv rac{V_t^L}{z_t^* P_t}$
$\Lambda_{zt,t+1} \equiv \frac{\beta}{\pi_{t+1}\mu_{z,t+1}^*} \frac{\lambda_{z,t+1}}{\lambda_{z,t}}$		

Table 5: Haver/DLX USECON Data Codes

Haver/DLX Code	Data Series
PDIMP	Total
PDIMPL	Less than 1 year left until maturity
PDIMP1	1 to 5 years left until maturity
PDIMP5	5 to 10 years left until maturity
PDIMP10	10 to 20 years left until maturity
PDIMP20	over 20 years left until maturity

Table 6: Parameters Corresponding to Targets

Parameter	Description	Calibration
β	discount rate	0.9964
b^L_yz	steady state ratio of long term government bonds to output	0.77
δ^b	steady state ratio of long to short bond holdings	1.86
g_yz	steady state ratio of government spending to output	0.2
κ	steady state primary fiscal surplus	0.0143
π^{target}	steady state target inflation	1.005
ψ_L	disutility weight on labor	1.2126
ν	elasticity of the term premium to the bond ratio	0.00074-
		0.0025